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ABSTRACT

A re-visitation of the well known free space Mach Zehnder interferometer is here reported. Coexistence between
one-photon and two-photons interference from collinear color entangled photon pairs is investigated. This is
seen to arise from an arbitrarily small unbalance in the arm transmittance. The tuning of such asymmetry
is reflected in dramatic changes in the coincidence detection, revealing beatings between one particle and two
particle interference patterns. Our configuration explores new physics of the real Mach Zehnder interferometer
especially useful for quantum optics on a chip, where the guiding geometry forces photons to travel in the same
spatial mode.
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1. INTRODUCTION

The Mach-Zehnder (MZ) interferometer has long been an important and versatile tool in optics, from its origins
in experiments with classical light,1,2 to its more recent applications in the study of quantum states.3–6

A source of entangled photon pairs is the process of Spontaneous Parametric Down Conversion (SPDC) in a
nonlinear optical material.3,7, 8 After such a photon pair is injected into a MZ interferometer, the photodetection
coincidence rate at the two output ports can be measured as a function of the time delay between the long and
short arms of the interferometer. In most experiments, the MZ interferometer is excited symmetrically from both
ports of the input beamsplitter (BS).9,10 As the photons are indistinguishable, the Hong-Ou-Mandel (HOM) effect
leads to a bunching of photons exiting this first beamsplitter,11–13 suppressing single-photon interference effects
in the coincidence rate measured at the output ports. The observed interference pattern then only contains two-
photon interference fringes; these have no classical analogue but reflect the entanglement in the input state.9,10

In this paper, we show that much richer physics can be explored by asymmetrically exciting the MZ in-
terferometer, such that collinear photon pairs are sent into the same input port. By controlling the relative
transmittance of the arms, we can tune from a regime where the interference is dominated by two-photon effects
to the opposite limit of single-photon physics. In intermediate regimes, there is a complex interplay between
both single-photon and two-photon interference.

This paper is organized as follows: in Section 2, we present a theoretical model of the unbalanced, asymmetrically-
excited MZ interferometer, and derive the probability of a coincidence photodetection in terms of an unbalancing
parameter between the two MZ arms. In Section 3, we use our theoretical model to fit experimental results.14

Finally in Section 4, we compare the interference patterns expected considering both lossless and lossy beam-
splitters in the Mach-Zehnder interferometer.
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2. THEORETICAL MODEL

We begin by building a theoretical model of the MZ interferometer sketched in Fig.1. The input radiation state
|Ψin〉 is sent into a single input port of the first beamsplitter (BS1 ). By using only one input port, we probe
a wider range of interference effects than if both input ports are used. After exiting BS1, the light propagates
along the MZ arms, guided by mirrors M1 and M2 into the second beamsplitter (BS2 ) before being collected by
photodetectors C and D.

We model the operation of the beamsplitters as the transformation of the input fields into the output fields
according to:

BS1→
(
r1e
−iδ t1
t1 r1e

−iδ

)
BS2→

(
r2ce

−iδ t2c
t2d r2de

−iδ

) (1)

where all coefficients ri and ti are real, and hence r2
i and t2i are the reflectivity and transmittivity respectively.

Here we have assumed that the reflection and transmission coefficients are independent of frequency. We also
have taken the operation of BS1 to be symmetric, while that of BS2 may be different for the light collected
by detector C or D, as indicated by the second subscript c, d. As described in Section 3, experimentally we
introduce such an asymmetry by tuning the position of detector D with respect to the output of BS2, thus
reducing t2d and r2d relative to r2c and t2c. As we shall show, these coefficients control the amplitude of various
photon interference effects and so this controlled asymmetry can be used to tune between different regimes.

In the beamsplitter relation (1), we have also explicitly kept the relative phase δ between the reflection and
transmission coefficients. For an ideal lossless beamsplitter, the relative phase must be equal to π/2 as required
by energy conservation.18 However, as derived by Barnett et. al.,15 this stringent phase condition may be relaxed
when a beamsplitter is intrinsically lossy. This will be discussed in further detail in Section 4. Note that we
assume for simplicity that the relative phase is identical and symmetric for both beamsplitters; this is reasonable
for this experiment, as the controlled asymmetry for BS2 introduced above affects the amplitude but not the
phase of the light collected.
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Figure 1. Sketch of the Mach-Zehnder interferometer, with parameters defined in the text.

To study photon interference, we calculate the coincidence rate of photons arriving at the two photodetectors,
which operate with a resolving time TR and efficiency K. With reference to Fig. 1, the probability per unit time
of coincidence detections at the output ports C and D of the MZ at times t and t+ τ is given by:16
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P (τ) = K 〈Ê−D(t)Ê−C (t+ τ)Ê+
C (t+ τ)Ê+

D(t)〉 (2)

in whichÊ+
C and Ê+

D are respectively the positive frequency parts of the electric field operator at the output ports
C and D of the interferometer . The expectation value of expression (2) is calculated on the state:

|ψin〉 = |0〉+
β√
2

∫
dωsdωi φ(ωs, ωi) â

†
ωs â
†
ωi |0〉 (3)

which represents the two photon state produced by the SPDC. The process splits a pump photon at frequency
ω̃ into a signal and an idler photon at frequencies ωs and ωi respectively.13 In Eq.(3), β is a constant which
is proportional to the average number of pump photons in a second.17 The function φ(ωs, ωi) in Eq.(3) is the
biphoton wavefunction,17 which is normalized in such a way that

∫
dωsdωi|φ(ωs, ωi)|2 = 1. In what follows, we

will consider the pump field as monochromatic, since its coherence time is assumed to greatly exceeds the one
of the down converted photons. As a consequence of this approximation, we can use the energy conservation
relation ω̃ = ωs + ωi to express the frequency of one photon of the pair as ω, and the frequency of the twin
photon as ω̃ − ω. In this way, the biphoton wavefunction, which we assume to be Gaussian, can be written as:

φ(ωs, ωi) ' φ(ω) =
1

4
√
π
√
σ
e−

(ω−ω̃/2)2

2σ2 (4)

in which σ is the bandwidth of the generated photons.

We can distinguish between two-photon and single-photon-like interference effects by studying Eq.(2) as a
function of a relative time delay ∆τ between the two MZ arms. Experimentally, we use a heater to vary ∆τ ,
and hence we indicate the upper arm with the subscript h (heater) and the lower arm with r (reference). The
propagation losses along the two arms are given by γ2

h and γ2
r respectively. Combining this with the beamsplitter

relations (1), we can write the electric fields Ec and Ed as:

E−c (t) = r1γhr2ce
−i2δE−in(t−∆τ) + t1γrt2cE

−
in(t)

E−d (t) = t1γrr2de
−iδE−in(t) + r1γht2de

−iδE−in(t−∆τ)
(5)

where E−in is the negative frequency part of the input electric field operator at BS1. From these expressions for
the electric fields, we can calculate the photon coincidence rate, provided that we also specify the input radiation
state |Ψin〉. By inserting a completeness relation between E−c (t+τ) and E+

c (t+τ) in Eq.(2), and by using Eq.(5)
we find:

P (τ,∆τ) = K
∣∣∣γhcγrde−i3δ 〈E−in(t)E−in(t+ τ −∆τ)〉+

+ γrdγrce
−iδ 〈E−in(t)E−in(t+ τ)〉

+ γhcγhde
−i3δ 〈E−in(t−∆τ)E−in(t+ τ −∆τ)〉

+ γhdγrce
−iδ 〈E−in(t−∆τ)E−in(t+ τ)〉

∣∣∣2
(6)
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where the expectation values are now evaluated between the initial state |Ψin〉 and the vacuum state |0〉, i.e
〈E−in(t)E−in(t′)〉 = 〈Ψin|E−in(t)E−in(t′) |0〉. In Eq.(6) we have introduced the parameters:

γhc = r1γh r2c γhd = r1γh t2d

γrc = t1γr t2c γrd = t1γr r2d

(7)

where the subscript h, r refers to the path along the upper or lower arm of the interferometer respectively, while
subscript c, d denotes whether the photon arrives at detector C or D.

The expectation values in Eq.(6) can be evaluated by using the Fourier representation of the negative fre-
quency part of the input electric field:

E−in(t) =

∫
a†ωe

iωtdω (8)

and hence that:
〈E−in(t)E−in(t′)〉 = 2φ(t− t′)eiω̃t

′
(9)

where φ(t) is the Fourier transform of φ(ω). Substituting Eq.(9) into Eq.(6), we obtain that

P (τ) ∝ |ph,h + pr,r + p
(R)
h,r + p

(T )
h,r |2, where:

ph,h = 2γhcγhd e
−i(ω̃∆τ+3δ)e−

σ2τ2

2 (10)

pr,r = 2γrcγrd e
−σ2τ2

2 e−iδ (11)

p
(R)
r,h = 2γhcγrd e

−i
(
ω̃∆τ

2 +3δ

)
e−

σ2(τ−∆τ)2

2 (12)

p
(T )
r,h = 2γhdγrc e

−i
(
ω̃∆τ

2 +δ

)
e−

σ2(τ+∆τ)2

2 (13)

Eqs. (10)-(13) are the transition amplitudes associated with the indistinguishable paths through which the
photon pair can travel from the input of BS1 to the photodetectors, as sketched schematically in the grey
shaded region of Fig.2. As can be seen, the amplitudes ph,h and pr,r refer to bunching, when both photons are

either reflected or transmitted by BS1. On the other hand, the amplitudes p
(R)
h,r and p

(T )
h,r describe anti-bunching,

when the photon pair is split at BS1. In these cases, the superscript R, T denotes respectively when the photons
are both either reflected or transmitted at BS2.

We emphasise that the antibunching paths (p
(T,R)
h,r ) are not generally allowed when both input ports of

BS1 are excited, due to the Hong-Ou-Mandel effect at the first beamsplitter.13 By using only a single input
port, we therefore explore a richer interplay of interference effects where the photon pair can travel along both
antibunching and bunching paths.

To calculate the coincidence rate, we have to square the sum of all the transition amplitudes in Eqs.(10)-(13),
and integrate τ over the coincidence resolving time of the photodetectors TR. As can be seen from the expressions
above, each amplitude vanishes when τ is much greater than the photon coherence time τc = 1/σ, while for all
practical experiments TR � τc. Hence, we can effectively extend the integration over τ from −∞ to∞, to finally
obtain:

P (∆τ) = K ′(C1 + C2 + C3) (14)

where K ′ is a constant and the three terms on the right hand side are defined as follows:

C1 = γ2
hcγ

2
rd + γ2

hdγ
2
rc + 2Aω̃ e

−σ2∆τ2

cos(2δ) (15)

C2 = γ2
hcγ

2
hd + γ2

rcγ
2
rd + 2Aω̃ cos(ω̃∆τ − 2δ) (16)

C3 = 2e−
σ2∆τ2

4

[
A

(1)
ω̃/2 cos

( ω̃∆τ

2
+ 2δ

)
+A

(2)
ω̃/2 cos

( ω̃∆τ

2

)]
(17)
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where we have introduced the following parameters:

Aω̃ = γrcγrdγhcγhd (18)

A
(1)
ω̃/2 = γhcγrc(γ

2
rd + γ2

hd) (19)

A
(2)
ω̃/2 = γhdγrd(γ

2
hc + γ2

rc) (20)

It will also be convenient to introduce the power-amplitude coefficient Aω̃/2 associated with the frequency com-
ponent at ω̃/2:

A2
ω̃/2 =

(
A

(1)
ω̃/2

)2

+
(
A

(2)
ω̃/2

)2

+ 2A
(1)
ω̃/2A

(2)
ω̃/2 cos(2δ) (21)

In Eqs.(15)-(17), we have grouped into C1,2,3 those terms which arise respectively from the interplay of anti-
bunching with antibunching paths; of bunching with bunching paths; and of antibunching with bunching paths.
These various combinations are illustrated schematically in the table of Fig.2, where the photon paths are shown
in the first gray-shaded row and column, and the resulting terms in P (∆τ) are sketched in the main entries of
the table. For example, all terms on the diagonal of this table represent the interference of a two-photon path
with itself and hence are independent of the delay ∆τ and are depicted as a constant contribution. We now
summarise the other main characteristics of our three different groupings of interference terms.

𝑝ℎ,ℎ 𝑝𝑟,𝑟 𝑝ℎ,𝑟
(𝑅)

𝑝ℎ,𝑟
(𝑇)

𝑝
ℎ
,ℎ

𝑝
𝑟
,𝑟

𝑝
ℎ
,𝑟

(𝑅
)

𝑃 ℎ
,𝑟(𝑇
)

Figure 2. A schematic summarising the interference terms between all the possible paths leading to a coincidence photode-
tection. The paths are sketched in the panels with a gray shaded background. From left to right, in the uppermost row,
we have: (ph,h) both photons are reflected in the upper arm, (pr,r) both photons are transmitted in the lower arm, (p

(R)
h,r )

photons are split by BS1 and reach the detectors by two reflections at BS2, (p
(T )
h,r ) photons are split by BS1 and reach

the detectors by two transmission at BS2. The transition amplitudes associated with the paths are given in Eq.(10)-(13).
The main entries of the table sketch the resulting contribution to the correlation function from the interference of these
paths as a function of ∆τ , where we have integrated in τ as described in the main text. By proceeding from left to right,
for example, the panels in the second row represent contributions from |ph,h|2, p∗h,hpr,r, p

∗
h,hp

(R)
h,r and p∗h,hp

(T )
h,r .

Firstly, as illustrated in the four bottom-right entries of Fig.2, the interplay of antibunching with antibunching
terms in Eq.(15) includes the characteristic Hong-Ou-Mandel dip in the coincidence due to the destructive
interference of the two different antibunching paths at the second beamsplitter. This reduction in the coincidence
is largest when the time delay between the two arms of the MZ is equal to zero, i.e when we are at the optical
contact of the interferometer. Note that here we assume that cos(2δ) is negative.

Secondly, we see in the four top-left main panels of Fig.2 that the interaction between the two different
bunching paths leads to fringes at a frequency which is doubled with respect to the average frequency ω̃/2 of
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the two photons. As can be seen from Eq.(16), these oscillations persist even when the time delay ∆τ exceeds
the single-photon coherence time τc. These therefore are two-photon interference effects arising from the colour-
entanglement of the SPDC radiation.

Finally, in the top-right and bottom-left entries of Fig.2, the interplay between the antibunching and bunching
paths leads to terms which oscillate at the photon average frequency ω̃/2. As can be seen from Eq.(17), these
terms are damped out as ∆τ increases beyond τc, as is characteristic of single-photon interference.

The combination of all of these terms into Eq.(14) leads to a complicated coincidence pattern which will, in
general, contain features from both the two-photon and single-photon interference. The strength of the different
oscillating terms is respectively measured by the terms Aω̃ and Aω̃/2 in Eqs.(18)-(21). Their ratio

ξ =
Aω̃/2

Aω̃
(22)

which we call the unbalancing parameter, will be used in the following to quantify the relative magnitude of
these effects. To understand the different physical regimes, we begin from the simplest case of ideal lossless
beamsplitters. Then the relative phase of the reflection and transmission coefficients in the beamsplitters is set
by energy conservation as δ1 = δ2 = π/2.15,18 Consequently, the unbalancing parameter simplifies to:

ξ =
Aω̃/2

Aω̃
=

(γhcγrd − γrcγhd)(γhcγhd − γrcγrd)
γrcγrdγhcγhd

(23)

and we can straightforwardly consider the two limits of ξ = 0 and ξ →∞.

In the limit when ξ = 0, antibunching-bunching interactions undergo complete destructive interference,
and the single-particle-like features disappear from the coincidence pattern. This happens if we impose some
symmetries on the arm losses or on the beamsplitter coefficients. The simplest such example is when both the
beamsplitters are 50 : 50 devices and the two arms have identical loss rates; we then have γhc = γhd = γrc = γrd
and Aω̃/2 = 0. Thus, only one frequency is observed when the device is ideally-symmetric, which is consistent
with what was found in previous works.9,10 We also note that there are three other configurations for which
ξ = 0:

1. If BS2 is balanced, so γhc = γhd and γrd = γrc.

2. If BS1 is balanced while the arm loss γr and γh is also equal, so γhc = γrc and γrd = γhd.

3. If the transmittance from the input to port C along the upper arm is equal to the transmittance to port
D along the lower arm (i.e. γrd = γhc) or vice-versa (γhd = γrc).

In the opposite limit of ξ → ∞, the coincidence rate will show no features of two-photon correlations. This
happens when one of the four factors in Eq.(7) is equal to zero. To see this, we consider, for example, γhc = 0; then
a photon collected at detector C can only have come from the lower MZ arm, providing which-way information
and destroying any two-photon interference.

As we shall study in the following, values of the unbalancing parameter ξ between [0,∞] occur when no
particular symmetries are imposed. This leads to coincidence patterns where the hallmarks of both one-photon
and two-photon interference are present.
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3. EXPERIMENTAL VALIDATION OF THE MODEL

To validate the model in Section2, we generated colour-entangled photons near 1550nm by using a 1mm long
periodically-poled Lithium Niobate crystal and a 775nm continuous wave pump laser.14 The quite large banwidth
of the generated radiation, which has been measured to be ≈ 300nm, is due to the small length of the crystal.
By using type-0 SPDC, we obtained co-polarized and collinear signal and idler photons. We implemented a
long wavelength pass filter (with a cutoff wavelength of 1500nm) to reject the pump from the IR light with an
isolation higher than 100 dB.
In order to introduce a variable time delay between the two arms of the interferometer, a cylinder of Borosilicate
Crown glass (NbK7) was placed in both MZ arms, and, in one arm, the NbK7 was connected to an electric
heater.14 We then used the thermo-optic coefficient of the NbK7 to smoothly vary its refractive index as we
changed the temperature. In this way, we were able to induce a variable time delay between the arms as long
as 150 fs. This time delay was extracted by assuming a central wavelength of the SPDC radiation of 1550nm,
corresponding to a fringe period of 5.16 fs.
The photons at the output ports of the interferometer were then focused by two lenses onto two InGaAs single
photon counting detectors (ID Quantique Id210 and ID Quantique Id201). One detector was used in free running
mode (40µs of deadtime) to detect one photon of the pair. When the other detector was triggered, it was enabled
for a gate width of 100ns. The outputs of the photodiodes were then fed into a Field Programmable Gate Array
digital correlator that provided the coincidence rate over a coincidence window of 5ns. As introduced above, we
tuned the parameters in Eq.(7) by the relative transmittance between the beams and the lenses of the photon
counters.

The results are displayed in Fig.3, with the experimental data shown in black and fits from Eq.(14) shown in
red. Our theoretical model was fitted to the experimental results via a genetic algorithm.19 This fitting procedure
was used to determine, for example, the unbalancing parameter ξ labelling each graph; the fitted parameters
found in this way were consistent with the controlled misalignments introduced in the experiment. We also
measured an average propagation loss factor from the input port of the MZ to the two detectors of ≈ 7 dB; this
is comparable to the theoretical value of 9 dB found using the model in Eq.(7) with fitted parameters.

In the case ξ = 0.77 in Fig.3, we balanced the interferometer in order to suppress antibunching-bunching
interactions. The residual component at ω̃/2, the average single-photon frequency of the downconverted photons,
is only due to the beamsplitter losses (a detailed analysis is given in Section 4). The coincidence rate exhibits
practically the same oscillating behaviour at frequency ω̃, the pump frequency, within and outside the coherence
time of the single photons. The observed pattern becomes a mixture between bunching-bunching and HOM-like
interference. The latter manifests itself as a decrease in the average value of the coincidence counts as we approach
the optical contact. The oscillation in the coincidence rate outside the coherence time is a clear manifestation of
the correlated or entangled nature of the two-photons state created in the down conversion process.10 To clearly
show that the oscillation at frequency ω̃ is due to purely second order interference effects, we plot in the inset of
Fig.3 (panel ξ = 1.34) the coincidence rate for time delays greatly exceeding the single photon coherence time
τc (∆τ > 100fs). Even if not reported in Fig.3, the very same oscillations outside τc are observed regardless of
the value of ξ.

As ξ is increased, the pattern changes significantly with respect to the balanced situation, due to the enabling
of new interference paths. The case at ξ = 0.83 in Fig.3 includes two photon, one photon and Hong Ou Mandel
interference effects all in a single coincidence pattern. Indeed, outside the coherence time, the antibunching
terms sketched in Fig.2 have vanishing probability, so the interference fringes at ω̃ are due to purely two photon
correlation effects. Within the coherence time of the photon wave packet, instead, the antibunching paths are
allowed to interfere together with the bunching ones, creating a mixed pattern in which single particle interference
at ω̃/2 and two particle one at ω̃ coexist. The HOM effect again can be seen as the decrease of the average
coincidences within the coherence time. In general the higher is the unbalancing between the arms, the higher
is the suppression of the two-photon contribution at ω̃ and, at the same time, the higher the visibility of the
single-photon component at ω̃/2.
For all three values of the unbalancing parameter in Fig.3, we observe a very good agreement between the
experimental results and our fitted theoretical model.
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Figure 3. Measured coincidence rates for different values of the unbalancing parameter ξ for SPDC light, taken from Ref.14

The solid red curves are fits from Eq. (14), while black scatter points are experimental data. The inset shown in the panel
ξ = 1.34 shows the coincidence rate for time delays larger than the single photon coherence time. The reported value of
ξ is taken from the simulation. A value of δ ≈ 0.87π

2
has been used, which is compatible with a measured beamsplitter

loss of ∼ 22%

4. LOSSY BEAMSPLITTER

Remarkably, we found out that the experimental data presented in Section 3 could not be fitted with a phase of
δ = π/2, corresponding to lossless beamsplitters. For a lossy beamsplitter, we follow the derivation of Barnett
et. al.15 who showed that in general the complex transmittance t and reflectance r satisfy:

|t|2 + |r|2 ≤ 1 (24)

where the equality holds for a lossless device. This can be interpreted as the probability of survival for a single
photon incident on the beam splitter, as this photon may be now be absorbed instead of transmitted or reflected.
Considering incoming classical or coherent fields of equal or opposite amplitude, it can be shown further that:15

|tr∗ + t∗r| ≤ 1− |r|2 − |t|2 (25)

ensuring that the total output intensity is less than or equal to that at the input. If we assume for simplicity
t∗ = t =

√
χ
2 and r = te−iδ to describe a balanced BS where the photon has an intrinsic survival probability χ,

the constraint on the relative phase between the reflection and transmission coefficients is:

| cos δ| ≤ (1/χ− 1) (26)
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When χ = 1 (i.e. for a lossless beamsplitter), this sets δ = ±π/2. When χ < 1, the phase δ can also be higher
or lower π/2, with important consequences. Firstly, we notice from Eq.(15) that if δ 6= π/2, the magnitude of
HOM dip will be smaller as the antibunching paths acquire different phases upon exiting BS2 and so no longer
completely destructively interfere. This is the reduction in the visibility of the Hong-Ou-Mandel effect for a lossy
beamsplitter with non-orthogonal reflection and transmission coefficients as predicted in.15

In the experimental setup described in Section 3, we measure a BS value of χ = (0.78±0.4). Then, assuming
the beamsplitter is balanced (i.e. |r| = |t|), the range of δ becomes:

0.82
π

2
. |δ| . 1.12

π

2
(27)

While this may at first seem a small difference from δ = π/2, it is enough to dramatically affect the appear-
ance of the coincidence pattern, as can be appreciated in Fig.4. We change the phase here from δ = π/2 to
δ = (0.87)π/2, which corresponds to the phase found from our fit to experimental results in Section 3 and it is
compatible with the measured beamsplitter losses in Eq.(27). Furthermore we can see that while the condition
for ξ →∞ is not affected by the beamsplitter phase, the limit of ξ = 0 is. We can understand this directly from
Eq.(21), by nothing that if δ 6= π/2, there will never be a complete cancellation of the antibunching-bunching
term. However, it can be shown that this term is still minimised by the ideal symmetric configuration where
γhc = γhd = γrc = γrd. As we can see this phase change affects many of the qualitative features in these patterns,
including the envelope, behaviour around the optical contact, and relative position of the peaks from the different
frequency oscillations. Again we emphasise that this remarkable phase sensitivity arises from the rich interplay
of multiple interference terms, going beyond previous experiments.9,10
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5. CONCLUSIONS

In this work, we revisited the Mach-Zehnder interferometer removing all elements of ideality which characterized
previous experiments in quantum optics. We presented a theoretical model for fourth-order interference patterns
when colour-entangled photon pairs are sent into the same input port of the MZ interferometer, i.e when the
device is asymmetrically excited. We showed that this configuration leads to a much wider-range of phenomena
than previously studied in one experiment, as it allowed us to observe the hallmarks of both one-photon and
two-photon interference within the same coincidence pattern. We discussed how the relative importance of these
effects can be tuned experimentally, and highlighted the sensitivity of these results to additional phase effects
from beamsplitter losses. We showed that our theoretical model fitted experimental results with very good
agreement.
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