
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 193.205.206.85

This content was downloaded on 04/07/2016 at 21:20

Please note that terms and conditions apply.

Quantum interference in an asymmetric Mach-Zehnder interferometer

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Opt. 18 085201

(http://iopscience.iop.org/2040-8986/18/8/085201)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/2040-8986/18/8
http://iopscience.iop.org/2040-8986
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Quantum interference in an asymmetric
Mach-Zehnder interferometer

A Trenti, M Borghi, M Mancinelli, H M Price, G Fontana and L Pavesi

Department of Physics, University of Trento, via Sommarive 14, Trento 38123, Italy

E-mail: alessandro.trenti@unitn.it

Received 24 March 2016, revised 17 May 2016
Accepted for publication 31 May 2016
Published 4 July 2016

Abstract
A re-visitation of the well known free space Mach-Zehnder interferometer is reported here. The
coexistence between one-photon and two-photons interference from collinear color entangled
photon pairs is investigated. Thisarises from an arbitrarily small unbalance in the arm
transmittance. The tuning of such asymmetry is reflected in dramatic changes in the coincidence
detection, revealing beatings between one particle and two particle interference patterns. In
particular, the role of the losses and of the intrinsic phase imperfectness of the lossy beamsplitter
are explored in a single-port excited Mach-Zehnder interferometer. This configuration is
especially useful for quantum optics on a chip, where the guiding geometry forces photons to
travel in the same spatial mode.

Keywords: quantum optics, quantum interferometry, color entangled photons, nonlinear optics

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, advances in the generation of stable quantum
states of light by spontaneous parametric down conversion
(SPDC) allowed to reinterpret several interferometric
experiments from a quantum optical point of view [1–4].
Nonclassical interference has been observed in Michelson,
Mach-Zehnder (MZ), Franson and Hong Ou Mandel (HOM)
geometries [5–8]. Among these, the MZ structure received
growing attentions due to its scalability in modern quantum
optical integrated circuits [9–11]. However, despite the sim-
plicity of the device, not all the possibilities have been
explored. In most of the cases, the symmetric configuration,
where the MZ is excited at both ports of the input beam
splitter, has been considered [8, 12, 13]. In this case, the
photon pair is never split after the entrance beamsplitter due
to HOM effect [5], thus reducing the number of indis-
tinguishable paths leading to a coincidence detection. Fur-
thermore, it was assumed that the propagation characteristics
(transmittance, losses, etc) of the two arms of the inter-
ferometer were the same. On one hand, this simplification
offers a more direct insight on the physics of the problem, but
at the same time it hides the possibility to observe novel
interactions between single and two photon correlations.

In this work, we revisited the classical Mach-Zehnder
interferometer by assuming asymmetry and losses to enable
all the different interference possibilities. In fact, we report on
the realization of an interference experiment in a Mach-
Zehnder device where all the symmetries are removed. A pair
of 1550 nm colour-entangled photons produced by type-0
SPDC (i.e. both the down converted photons are co-polarized
and collinear with the pump ones) in a crystal of periodically
poled lithium niobate (PPLN) enters in the same input port of
the interferometer. Photon antibunching (split) and bunching
(N00N) states, are created after the first beam splitter, and the
strength of their self and mutual interaction is changed by
tuning the asymmetry of the transmittance between the two
arms. When bunching-bunching interactions are suppressed,
the coincidence detection pattern, which is monitored as a
function of the time delay between the arms, shows only one
particle interference fringes. On the contrary, the period of the
latter is doubled when antibunching-bunching interactions
cancel, creating a two particle interference pattern. When all
the interactions act simultaneously, mixed patterns, showing
at the same time beatings between single-photon, two-photon
and Hong Ou Mandel interference, are observed. It is worth
noting that, while all these interference effects have been
previously reported [5, 8, 14], it has never addressed the
impact of the arm and of the beamsplitter losses on their
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interplay in the same coincidence pattern. The phase imper-
fectness induced by the presence of the beamsplitter losses
plays a role in determining the outcome of our interferometric
quantum optical experiment. The assumption of a lossy beam
splitter was essential to reproduce the experimental data with
the theoretical model. Our treatment is particularly relevant
for applications of quantum optic concepts in integrated
devices, since the waveguiding geometry itself forces the two
photons of the pair to travel in the same spatial direction, i.e
they are collinear at the input port of the MZ.

The paper is organized as follows: in section 2, the
theoretical model of the MZ is presented, and the probability
of a coincidence photodetection is derived in terms of an
unbalancing parameter. The experimental setup used to
validate the model predictions will be outlined in section 3.
The experimental results will be discussed in section 4.

2. Model

With reference to figure 1(a), the probability per unit time of
coincidence detections at the output ports C and D of the MZ
at times t and t+t is given by [15]:

t t t= á + + ñ
- - + +

P K E t E t E t E t 1D C C D( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

in which K is a constant which depends on the photodetectors,
while

+
EC
ˆ and

+
ED
ˆ are respectively the positive frequency parts

of the electric field operator at the output ports C and D of the
interferometer. The expectation value of expression (1) is
calculated on state:

òy
b

w w f w wñ = ñ + ñw wd d a a0
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∣ ∣ ( ) ˆ ˆ ∣ ( )† †

which represents the two photon state produced by the SPDC.
The process splits a pump photon at frequency w̃ into a signal
and an idler photon at frequencies ws and wi respectively [5].

In equation (2), β is a constant which is proportional to the
average number of pump photons in a second [16]. The
function f w w,s i( ) in equation (2) is the biphoton wavefunc-
tion [16], which is normalized in such a way that

ò w w f w w =d d , 1s i s i
2∣ ( )∣ . In what follows, we will consider

the pump field as monochromatic, since its coherence time is
assumed to greatly exceeds the one of the down converted
photons. As a consequence of this approximation, we can use
the energy conservation relation w w w= +s i˜ to express the
frequency of one photon of the pair as ω, and the frequency of
the twin photon as w w-˜ . In this way, the biphoton
wavefunction, which we assume to be Gaussian, can be
written as:

f w w f w
p s

= - w w
s

-

 e,
1

3s i
4

2 2

2 2( ) ( ) ( )
( ˜ )

in which σ is the bandwidth of the generated photons. The
state in equation (2) is sent to the input beamsplitter BS1,
which, for simplicity, is described by the frequency
independent amplitude reflectance and transmittance para-
meters r1 and t1. The two arms of the MZ have different
propagation losses gh and gr (defined as the ratio between the
electric field at the input ports of BS2 and the electric field at
the output ports of BS1), and a relative time delay tD . The
subscript h comes from the fact that we will use an electronic
heater to vary tD in the experiment described in section 4,
while the subscript r indicates the reference arm. The output
beamsplitter BS2 has amplitude reflectivity r2j and amplitude
transmittivity t2j, where =j C D, refer to the output ports of
BS2. This notation allows BS2 to be not symmetric with
respect to the input beams A and B, e.g. the reflectivity from A
to C (r2C) can be different with respect to the reflectivity from
B to D (r2D). We point out that, in our case, such asymmetry
is not attributed to an intrinsic unbalance of the BS2
transmittance/reflectance, but is induced by independently
tuning the position of the focusing lenses in front of the
detectors C and D. This is purposely done in order to
introduce a given asymmetry in the interferometer and,
therefore, to allow studying its effect in the coincidence rates.
For both BS1 and BS2, we will assume an equal phase
difference δ between the transmitted and reflected waves. The
range of variability of δ, as discussed in appendix B, is
determined by the magnitude of losses [17]. In the most
familiar case of a lossless beamsplitter, d p=  2 [18].

The electric fields EC and ED can be written as:
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where -Ein is the negative frequency part of the input electric
field operator at BS1. By inserting a completeness relation
between t+-E tC ( ) and t++E tD ( ) in equation (1), and by
using equation (4) we find:
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Figure 1. Panels (a, b, c, d) represent the possible paths that the
photon pair can follow from BS1 to the output ports C and D. Cases
(a) and (b) are referred as bunching states, since the photon pair is
not divided by BS1. On the contrary, cases (c) and (d) are called
antibunching states since the pair is split by BS1.
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where the expectation values are now evaluated between the
initial state Y ñin∣ and the vacuum state ñ0∣ , i.e
á ¢ ñ = áY ¢ ñ- - - -E t E t E t E t 0in in in in in( ) ( ) ∣ ( ) ( )∣ . In equation (5) we
have introduced the parameters:

g g g g
g g g g

= =
= =

r r r t
t t t r 6

hc h C hd h D

rc r C rd r D

1 2 1 2

1 2 1 2 ( )

where the subscript h r, refers to the path along the upper or
lower arm of the interferometer respectively, while subscript
c d, denotes whether the photon arrives at detector C or D.
The expectation values in equation (5) can be evaluated by
using the Fourier representation of the negative frequency
part of the input electric field:

ò w= w
w-E t a e d 7i t

in( ) ( )†

and hence that:

fá ¢ ñ = - ¢ w- - ¢E t E t t t e2 8i t
in in( ) ( ) ( ) ( )˜

where f t( ) is the Fourier transform of f w( ). Substituting
equation (8) into equation (5), we obtain that
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The amplitude probabilities in equations (9)–(12) are
associated to well defined physical paths that the photon pair
can follow from BS1 to ports C and D. These are sketched in
figure 1. Consider for example the case in figure 1(a), which
is described by equation (9): both signal and idler are reflected
at BS1 and bunched into the upper arm of the MZ (r1

2), and
experience the same losses (gh

2). Then one photon is reflected
to port C while the other is transmitted to the port D at BS2
(t rD C2 2 ). While travelling in the upper arm, they acquire an

overall phase factor w t- De i ˜ . The factor -s t
e

2 2
2 accounts for the

fact that the two photons are localized in time within their
coherence time t =

sc
1 . Similar reasoning applies to the cases

when both photons are transmitted at BS1 (figure 1(b) and
equation (10)) or when the pair is split (figures 1(c), (d) and
equations (11)–(12)). The difference in the paths described by
ph r

R
,

( ) and ph r
T
,

( ) comes from the fact that the pair reaches the
output ports undergoing two reflections or two transmissions
at BS2 respectively. The factor two in all the amplitude
probabilities takes into account the fact that the system is
symmetric for the exchange of signal and idler photons. It is
worth noting that the coincidence measurement corresponds
to an integration with respect to τ over the coincidence
resolving time of a few nanoseconds of our detectors, which
is much longer than the photon correlation time. After per-
forming the modulus square of the sum of the four transition

amplitudes in equations (9)–(12) and integrating, one finds
that the coincidence rate Nc is given by:

tD = ¢ + +N K C C C 13c 1 2 3( ) ( ) ( )

where ¢K is a constant and the three terms on the right hand
side are defined as follows:

g g g g d= + + w
s t- DC A e2 cos 2 14hc rd hd rc1
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In equations (14)–(16) we have adopted the following
definitions:

g g g g=wA 17rc rd hc hd ( )˜

g g g g= +wA 18hc rc rd hd2
1 2 2( ) ( )˜

( )

g g g g= +wA . 19hd rd hc rc2
2 2 2( ) ( )˜

( )

It is also convenient to introduce the power amplitude
coefficient wA 2˜ associated to the frequency component at w

2

˜ :

d= + +w w w w wA A A A A2 cos 2 . 202
2

2
1 2

2
2 2

2
1

2
2( ) ( ) ( ) ( )˜ ˜

( )
˜
( )

˜
( )

˜
( )

Equation (14) represents the antibunching-antibunching
interaction between the paths (c) and (d) in figure 1, resulting
in the well-known HOM dip at the optical contact of the MZ
( tD = 0). Equation (15) describes the bunching-bunching
interaction between the paths (a) and (b) in figure 1, which is
mediated by the coupling strength wA ˜ . This term oscillates at
frequency w̃ which is two times the average single photon
frequency (w 2˜ ) and is responsible of two photon inter-
ference. Finally equation (16) comes from the interference
between the bunching cases with the antibunching ones, and
is mediated by the interaction parameter wA 2˜ . This inter-
ference channel is missing in a balanced MZ or in a MZ
which is fed symmetrically at the two input ports due to a
completely destructive quantum interference [8, 12, 13]. This
term shows fringes at w 2˜ , creating a single photon inter-
ference pattern. This comes from the fact that the phase dif-
ference between the bunching and the antibunching cases is
always w tD2( ˜ ) . In fact, from the comparison of the paths
(a-b) in figure 1 with the ones in figures 1(c)–(d), one can
notice that there is always one arm of the interferometer
which carries one more photon with respect to the other. The
same happens when a single photon enters at the input of BS1:
it can take either the lower arm or the upper one, giving a
relative phase of w tD2( ˜ ) between the two paths. In general,
the coincidence pattern exhibits competing effects between
single and two particle interference, where their relative vis-
ibility can be evaluated by the magnitude of an unbalancing
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parameter x = w wA A2˜ ˜ . Without losing any generality, we
can now restrict to the case of a lossless beamsplitter, in
which d = p

2
. In this case equation (20) simplifies

to g g g g g g g g= - -wA hc rd rc hd hc hd rc rd2
2 ( )( )˜ .
In the limiting case where x  ¥, the coincidence rate

shows no signs of two photon correlations. This can occur when
one of the four loss factor in equation (6) is equal to zero. If we
consider for example the case g = 0hc , then the photon which
fires the detector at port C is forced to come from the lower arm,
providing a which-path information. The remaining uncertainty
between the paths which the other photon of the pair may take
to fire the other detector, gives raise to pure single photon
interference. The lack of two photon correlations can be also
explained from the fact that when g = 0hc , the bunching path in
figure 1(a) is suppressed, so bunching-bunching interactions
(which are the source of two photon correlations) cancel. In the
opposite case where x  0, antibunching-bunching interactions
cancel out. This happens when some symmetries are imposed
on the arm losses or on the beamsplitter coefficients. The
simplest case is when both the beamsplitters are 50/50 devices
and the two arms have the same losses. We then have
g g g g= = =hc hd rc rd and consequently =wA 02˜ . Thus, only
one frequency is observed when the device is ideal symmetric,
which is consistent with what found in previous works [8, 12].
There exist actually three other possible configurations for
which antibunching-bunching interactions cancel:

i. Considering BS2 perfectly balanced, in this case
g g=hc hd and g g=rd rc.

ii. Imposing BS1 balanced and, at the same time, the arm
loss gr and gh to be equal, in this case g g=hc rc
and g g=rd hd .

iii. Imposing that the transmittance from the input to port C
while travelling in the upper arm is equal to the
transmittance of its symmetric path (g g=rd hc) or vice-
versa (g g=hd rc).

The presence of beamsplitter loss imped a complete
cancellation of the antibunching-bunching term. However, it
is again the balanced configuration which minimizes this
interference effect. Intermediate values of ξ can be realized by
changing the relative arm transmittance.

3. Experimental setup

The model predictions of section 2 are validated using the
experimental setup shown in figure 2.

Colour entangled photons near 1550 nm are generated by
a 1 mm long PPLN crystal using a 775 nm continuous wave
pump laser. Due to the small length of the crystal, the down-
converted radiation is broadband, with a measured bandwidth
of ≈300 nm. Type-0 SPDC allows to have co-polarized and
collinear signal and idler photons. A long wavelength pass
filter IF (1500 nm of cutoff wavelength) filters out the 775 nm
nm pump from the infrared light, providing an isolation
higher than dB100 . In order to introduce a variable time delay

between the two arms of the interferometer, a cylinder ofb-
Borosilicate crown glass (NbK7) has been placed in both MZ
arms. On one arm, the NbK7 is connected to an electric
heater.

Thanks to the thermo-optic coefficient of the NbK7, we
can smoothly vary the refractive index as a consequence of a
change in the temperature. We are able to induce a slow linear
increase of the time delay between the arms which can be as
long as fs180 in a four hours measurement. This time delay
has been extracted by assuming a central wavelength of the
SPDC radiation of 1550 nm, which corresponds to a fringe
period of fs5.16 . The smoothness of the refractive index
change and the long duration of the measurement allows to
reduce the noise of the apparatus and to produce high quality
coincidence fringes with relative low counts (< Hz10 ). The
photons at the output ports of the interferometer are focused
by two lenses onto two InGaAs single photon counting
detectors D1 and D2 (ID Quantique Id210 and ID Quantique
Id201). D1 works in free running mode ( ms40 of deadtime)
and has the task to herald one photon of the pair. D2 is
triggered by D1 and is enabled for a gate width of ns100 . The
outputs of the photodiodes are fed into a field programmable
gate array digital correlator that provides the coincidence rate.
The coincidence window is ns5 .

4. Measurements

The single port (in this case, port D) count rate is measured as
a function of the time delay tD and is shown in figure 3.
Since the curve is symmetric with respect to the optical
contact, we report only the measured values for negative time
delays.

As expected, the curve exhibits oscillations with a period
equal to p

w
2

2˜
, since it comes from single particle interference.

These oscillations are modulated by a slowly varying

Figure 2. Outline of the experimental setup. L1,L2 = input/output
lenses, PPLN = periodically poled lithium niobate, IF = interference
filter, OBJ1,OBJ2 = input/output fiber couplers, D1, D2 = single
photon detectors.
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envelope due to the finite coherence time of the photons,
through which we estimated a value of tc of  fs24.1 0.7( ) .
We notice that the oscillations do not damp immediately to
zero for t tD  c, but exhibits a ripple. This is due to the
presence of the interference filter IF, which has an abrupt
decrease of the transmittance at 1500 nm, as well as to the roll
off of the detector efficiency, which occurs at 1650 nm. As a
result, the spectral distribution of the photons entering the MZ
is box-like, and shows an autocorrelation which resembles a
sinc function. However, the gaussian distribution in
equation (3) will be kept during the rest of this section since it
provides an excellent approximation. The coincidence rate
obtained for different values of the unbalancing parameter ξ is
shown in figure 4. To change the value of ξ, we simply
independently tune the position of the focusing lenses in front
of the detectors C and D. The values of ξ reported in figure 4
are taken from simulation. In the case x = 0.77 in figure 4, we
balanced the interferometer in order to suppress antibunching-
bunching interactions. The residual component at w 2˜ is only
due to the beam splitter losses (approximately 22%, as dis-
cussed in appendix B). The coincidence rate exhibits practi-
cally the same oscillating behaviour at frequency w̃ within
and outside the coherence time of the single photons. The
observed pattern becomes a mixture between bunching-
bunching and HOM-like interference. The latter manifests
itself as a decrease in the average value of the coincidence
counts as we approach the optical contact. The oscillation in
the coincidence rate outside the coherence time is a clear
manifestation of the correlated orentangled nature of the two-
photons state created in the down conversion process [12]. To
clearly show that the oscillation at frequency w̃ is due to
purely second order interference effects, we plot in the inset
of figure 4 (panel x = 1.34) the coincidence rate for time
delays greatly exceeding the single photon coherence time
( tD > fs100 ). As we can see from figure 3, for such time
delays any possible contribution arising from first order
interference to the coincidence pattern vanishes. Even if not
reported in figure 4, the very same oscillations outside tc are
observed regardless of the value of ξ.

As ξ is increased, the pattern changes significantly with
respect to the balanced situation, due to the enabling of new
interference paths. The case at x = 0.83 in figure 4 includes two
photon, one photon and Hong Ou Mandel interference effects
all in a single coincidence pattern. Indeed, outside the coherence
time, the antibunching terms in figures 1(c)–(d) have vanishing
probability, so the interference fringes at w̃ are due to purely
two photon correlation effects. Within the coherence time of the
photon wave packet, instead, the paths (c) and (d) in figure 1 are
allowed to interfere together with the ones in (a) and (b),
creating a mixed pattern in which single particle interference at
w 2˜ and two particle one at w̃ coexist. The HOM effect again
can be seen as the decrease of the average coincidences within
the coherence time. In general the higher is the unbalancing

Figure 3. The single port count rate for port D is shown as a function
of the interferometer time delay tD . The optical contact, where the
two arms have no time delay, is placed at tD = 0

Figure 4. The coincidence photodetection rate is plotted against the
interferometer time delay tD for different values of the unbalancing
parameter ξ. The solid red curves represent equation (13), while black
scatters are experimental data. The inset shown in the panel x = 1.34
shows the coincidence rate for time delays larger than the single
photon coherence time. The reported value of ξ is taken from the
simulation. A value of d » p0.87

2
has been used, which is compatible

with a measured beamsplitter loss of »22% (see appendix B and ref.
[17]). Values of the fit parameters are reported in appendix A.
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between the arms, the higher is the suppression of the two-
photon contribution at w̃ and, at the same time, the higher the
visibility of the single-photon component at w 2˜ . We see from
figure 4 that it is sufficient to induce a value of x = 1.34 to
practically cancel out the oscillation at w̃ within the coherence
time. In all the three cases shown in figure 4, simulations (solid
red curves) well matches the experiment only if the phase δ

slightly deviates from p
2

d = p0.87
2( ), i.e, if one assume that the

beamsplitter is lossy (see appendix B). The high sensitivity to
(even small) phase changes induced by the beamsplitter is
shown in figure 5. Here, patterns have been simulated using the
same experimental parameters as in the case x = 1.34 in

figure 4. We clearly see that a lossless BS d = p
2( ) do not

correctly model the experimental patterns in figure 4. With a
20% deviation of δ from p

2
, the fringe pattern gets mirrored-like

with respect to the lossless case. This high sensitivity comes
from the fact that the BS phase δ enters in the three path-
interactions terms in equations (14)–(16) with different combi-
nations, so that even small variations can significantly alter the
coincidence rate.

5. Conclusions

We have re-analyzed the well-known Mach-Zehnder inter-
ferometer by considering asymmetry and losses in the pro-
pagation of the photons. We have shown a quantum
mechanical effect where, by independently tuning the global
transmittance of the arms of a free space Mach-Zehnder
interferometer, we can actually control the degree of inter-
ference between bunching and anti-bunching states leading to
a coincidence photodetection. In this experiment a correlated
pair of signal and idler photons, produced by SPDC, is sent at
the same input port of the interferometer. This configuration
ensures the possibility to reveal, on the same coincidence
pattern, signs of one photon, two photon and HOM-like
interference effects. The experimental results are in very good
agreement with theory. We think that our treatment offers an
improved comprehension and a more general view of the MZ
interferometer, which for all practical applications (both free
space or integrated) faces the problem of amplitude

unbalancing due to spatial misalignments, propagation losses
or fabrication errors. The theoretical method developed can be
directly applied as it stands to an integrated MZ on a chip,
provided that the phase velocity in free space is replaced with
the phase velocity in the guided geometry. Furthermore, even
if not explicitly treated in this work, we point out that in
principle similar effects could be observed in all interfero-
metric structures based on beam amplitude division.
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Appendix A. Fit parameters of the coincidence rate

A stochastic algorithm (differential evolution optimization
[19]) has been adopted to minimize the cost function in
equation (13). We choose g g g g s d ¢K, , , , , ,hd hc rd rc as free
parameters. The frequency w̃ has been fixed to
w = -fs2.448 ,1˜ which corresponds to a wavelength
of l = 775 nm˜ .

We run the algorithm 15 times in order to improve the
accuracy of the parameters. Each run has been stopped after
a fixed number of iterations (600). Further iterations were
seen to not significantly improve the goodness of the fit
(the discrepancy decreases about the 0.001% by doubling the
number of iterations). The values of the optimized parameters
are listed in table 1. Since the value of σ does not depend on
ξ, it has been computed only for x = 1.34 and then kept fixed
during the optimization of the cases x = 0.77 and x = 0.83.
The minimum loss measured from the input port of the Mach
Zehnder to the two detectors is » dB7 , which is comparable
to the value found in the simulation (minimum lossess
of » dB9 ).

Figure 5. Effect of the beamsplitter induced phase δ on the coincidence pattern.
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Appendix B. Beamsplitter loss and phase

The beamsplitter losses and the relative phase between the
transmitted and reflected waves play a significant role in our
measurements. Figure 6 shows the measured BS lossess for
both S and P polarized waves in the wavelength range
1510 nm–1570 nm. We worked with S polarized photons in
our experiment. This corresponds to an average loss of

21.9 0.4( ) % for each BS. If the BS were lossless, the
relative phase δ between the transmitted and the reflected
wave at the ouput ports will be fixed to d = p

2
. When lossess

are introduced, this constraint relaxes to the inequality [17]:

d
g

-cos
1

1 21∣ ( )∣ ( )

where g = +r t2 2∣ ∣ ∣ ∣ . In deriving equation (21), we assumed

a 50/50 BS with real transmittance = gt
2

and complex

reflectance = dr tei . This simplified model describes quite

well the BS in our experiment. By setting g = 0.781 in
equation (21) we found that the phase δ must be
bounded between d = 1.287 0.007 radmin ( ) and d =max

1.855 0.007 rad( ) . These constraints have been imposed
to δ during the optimization procedure described in the
previous section. The value which best fits our data has been
found to be 1.37 0.04 rad( ) .
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