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We report on a joint theoretical and experimental study of an integrated photonic device consisting of a
single-mode waveguide vertically coupled to a disk-shaped microresonator. Starting from the general theory of
open systems, we show how the presence of a neighboring waveguide induces a reactive intermode coupling
in the resonator, analogous to an off-diagonal Lamb shift in atomic physics. Observable consequences of this
coupling manifest as peculiar Fano line shapes in the waveguide transmission spectra. The theoretical predictions
are validated by full vectorial three-dimensional finite-element numerical simulations and are confirmed by the
experiments.

DOI: 10.1103/PhysRevA.90.053811 PACS number(s): 42.25.Hz, 31.30.jf, 42.60.Da, 42.82.Gw

I. INTRODUCTION

The study of the consequences of coupling a physical
system to an environment constitutes the central problem in
the theory of open systems [1]. This coupling, on one hand,
allows the system to dissipate energy through active decay
channels. On the other hand, its reactive component leads to a
shift of energy levels and oscillation frequencies of the system.
Most celebrated examples of this physics involve an atom
coupled to the bath of electromagnetic modes [2], namely,
the (dissipative) spontaneous emission of photons from an
excited state [3–5] and the (reactive) Lamb shift of transition
frequencies [6–8].

Pioneering experimental studies in late 1970s [9] showed
that destructive interference of different decay paths, leading to
the same final continuum, can suppress absorption by a multi-
level atom via the so-called coherent population trapping [10]
and electromagnetically induced transparency (EIT) [11,12]
mechanisms. While originally these phenomena were discov-
ered in the atomic physics context, a continuous interest has
been devoted to analogous effects in solid-state systems [13],
quantum billiards [14–16], photonic devices [17–23], and,
very recently, optomechanical systems [24]. Although in most
experiments only the dissipative features are affected by the
interference, the theory predicts that a similar phenomenon
should also occur for the reactive ones [1].

In photonics, the presence of a waveguide in the vicinity
of a resonator activates new radiative decay channels for the
resonator modes via emission of light into the waveguide
mode [25–27]. The corresponding reactive effect is a shift
of the resonator mode frequencies, which can be interpreted
as the photonic analog of the atomic Lamb shift. In this paper,
we report on a joint theoretical and experimental study of
a photonic device in which pairs of modes of very similar
frequencies are coupled simultaneously to the same waveguide
mode. Both the dissipative and the reactive couplings of the
cavity modes to the waveguide turn out to be affected by
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interference phenomena between the two modes, which can be
summarized as environment-induced intermode couplings: in
the atomic analogy, the dissipative component gives a coherent
population trapping phenomenon, while the reactive one
produces a sort of off-diagonal Lamb shift. In this work, we will
show that the consideration of both of these coupling terms is
necessary in order to explain the peculiar Fano interference line
shapes experimentally observed in the transmission spectra of
single resonators.

The paper is organized as follows. In Sec. II we introduce
the integrated photonic system under consideration, formed by
a whispering-gallery disk microresonator vertically coupled
to a single-mode waveguide. In Sec. III we first introduce
the theoretical model which is used to study the transmission
through the waveguide-cavity system in the general case of
an arbitrary number of modes. This model is then used to
obtain analytical insight on the asymmetric Fano line shapes
that appear as soon as two (or more) cavity modes are
simultaneously excited. In Sec. IV we present the results of
our full three-dimensional (3D) numerical calculations. Exper-
imental data, fully confirming our theoretical predictions, are
illustrated in Sec. V. Conclusions are finally drawn in Sec. VI.

II. THE VERTICALLY COUPLED
RESONATOR-WAVEGUIDE SYSTEM

The system under consideration consists of a thin microdisk
resonator vertically coupled to an integrated single-mode
waveguide located below the disk [Fig. 1(a)]. In contrast
to the traditional lateral coupling geometry, where typically
only the most external first radial mode family (RMF)
experiences an appreciable coupling to the waveguide, the
vertical coupling geometry allows for an independent lateral
and vertical positioning of the waveguide, permitting thus the
coupling to the different mode families to be freely tuned, in
particular that to the more internal ones [28,29]. Since these
latter typically have lower intrinsic quality factors, the vertical
coupling geometry is crucial to our experiments, as it allows for
several RMFs to be simultaneously close to critical coupling
and, therefore, visible in transmission spectra.
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FIG. 1. (Color online) (a) A sketch of the microphotonic device. (b) The intensity profile of the first and second radial mode families
(RMFs) of the resonator (top and middle panels) and of the waveguide mode (bottom panel). The (blue) curves show the cuts of the intensity
profile, and the labels indicate the different materials. (c) (d) Results of ab initio numerical calculations for (c) the radiative decay rate ratio
�rad

22 /�rad
11 and (d) the frequency shifts of the first (�11, top) and the second (�22, bottom) radial family modes as functions of the waveguide

position. The open circles indicate the waveguide position for the fabricated 40-μm-diameter resonator.

The remarkable tunability of the waveguide-resonator
coupling is numerically illustrated using ab initio finite-
element numerical simulations performed using a commercial
3D full-wave finite-element method (FEM) software [30].
The results for the frequencies and damping rates of the
different resonator modes are shown in Figs. 1(c) and 1(d):
numerically, they have been obtained from the eigenmodes
of the electromagnetic wave equation with suitable absorbing
boundary conditions. In order to minimize the contribution
from mode-coupling terms, at this stage we have focused
on a case where the lowest two RMFs of the resonator are
spectrally separated, so that the numerical eigenfrequencies
provide the frequencies and linewidths of the two modes.
A brief discussion of the physical meaning of the numerical
eigenfrequencies when the two resonator modes are spectrally
close is given in the Appendix. In all considered cases, the
numerical simulations confirm the experimental observation
that the strength of the backscattering into counterpropagating
modes by the waveguide is negligible as compared to the decay
rates [31].

The ratio of the radiative decay rates of the two modes
shown in Fig. 1(c) is proportional to the relative intensity of
their coupling to the waveguide: as expected, this value is the
largest when the lateral position of the waveguide matches the
main lobe of the the second RMF [Fig. 1(b) middle panel]. The
photonic analog of the atomic Lamb shift for (independent)
cavity modes is illustrated in Fig. 1(d): the frequency shifts
�11 and �22 of the two modes are measured from the bare

frequencies of the modes when the waveguide is far apart
from the resonator. While in the atomic case the calculation
of the Lamb shift, originating from photon emission and
reabsorption processes, requires sophisticated techniques and
a careful handling of UV divergences [2], in the photonic
case one typically has a redshift of all modes when a generic
dielectric material is brought close to a resonator [25].

III. ANALYTICAL THEORY

In this section, we present our theoretical predictions for
the transmittivity of the waveguide-resonator device. While
the theoretical approach is fully general and can be applied to
arbitrary multimode cases, much of our attention will be fo-
cused on the simplest two-mode model, which already captures
the interesting new physics originating from the intermode
coupling terms. In the experiment, the two resonator modes
circulate in the same direction around the disk but belong
to different radial families. Future work will deal with more
complex configurations where many modes are simultaneously
close to resonance and/or backscattering processes induce
significant couplings to counterpropagating modes.

A. The input-output model

The transmission of a waveguide coupled to a resonator can
be described by generalizing the input-output theory of optical
cavities [32] to the multimode case. In the present two-mode
case, the equation of motion for the field amplitudes αj=1,2
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can be written as

i
dαj

dt
=

[
ωo

j + �jj − i
γ nr

j + �rad
jj

2

]
αj

+
(

�12 − i
�rad

12

2

)
α3-j + ḡjEinc(t). (1)

In the absence of the waveguide, the two modes oscillate
independently of each other at a bare frequency ωo

j and have an
intrinsic, nonradiative decay rate γ nr

j . The incident field, which
propagates along the waveguide and drives the resonator, is
described in the last term in Eq. (1). The coupling amplitude
of the driven waveguide mode to the j = 1,2 resonator mode
is quantified by the ḡj coefficients. In the following, we focus
on a monochromatic incident field Einc(t) = Einc e−iωinct .

The effect of the waveguide on the cavity mode oscillation
is included in the motion equation (1) via the Hermitian �rad

and � matrices, for which formal application of the theory of
open systems within the Markov approximation [1] provides
the general expression

�jl + i
�rad

j l

2
=

∫
dK

2π

∑
β

g∗
β,j (K) gβ,l(K)

ωinc − 	β(K) − i0+ , (2)

in terms of the coupling amplitude gβ,j (K) of the j th resonator
mode to that of the waveguide of longitudinal wave vector
K , mode index β, and frequency 	β(K). For single-mode
waveguides, �rad is determined by the single propagating
mode for which 	β(K) = ωinc and we can take gβ,j (K) = ḡj

real and positive. This imposes the requirement that the
�rad

12 coefficient, typically responsible for EIT-like interference
effects in the atomic context, is related to the radiative

linewidths �rad
jj by �rad

12 =
√

�rad
11 �rad

22 .
Even though a quantitative estimation of � using Eq. (2)

is in most cases impractical as it involves a sum over all
(both guided and nonguided) waveguide modes, this equation
provides an intuitive picture of the underlying process: the
diagonal and off-diagonal terms originate from the virtual
emission of a photon from a resonator mode and its immediate
recapture by the same or another mode, respectively. From a
qualitative point of view, while the diagonal terms are typically
�jj < 0, we are unable to invoke any general argument to
determine the nondiagonal �12. A similar intermode coupling
term was mentioned in [20] starting from a coupled-mode
approach. Below, we will see how a real �12 > 0 is needed to
reproduce the experimental data and we will point out some
unexpected features due to this term.

B. The transmittivity of two-mode resonators

In our model, the waveguide transmission reads

T (ωinc) = |Etr/Einc|2 = |1 − i ρ
∑
j=1,2

ḡ∗
j ᾱj /Einc|2, (3)

in terms of the stationary solution ᾱj of the motion equa-
tions (1) and the density of states ρ = |dK/d	| in the
waveguide. When the waveguide is effectively coupled to
one resonator mode only, a typical resonant transmission
dip is recovered: under-, critical-, and overcoupling regimes
are found depending on whether �rad

11 is lower than, equal
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FIG. 2. (Color online) Analytically calculated transmission
spectra in different regimes and for different detunings δ = ω2 − ω1.
(a) Both modes are undercoupled, �rad

11,22/γ
nr
1,2 = 0.25 and

�12 = 0. (b) Both modes are overcoupled, �rad
11,22/γ

nr
1,2 = 4 and

�12 = 0. (c) Narrow (broad) mode is undercoupled (overcoupled),
�rad

11 /γ nr
1 = 0.125 (�rad

22 /γ nr
2 = 2) and �12/γ

nr
2 = 0.6. The ratio

γ nr
1 /γ nr

2 = 0.1 (a-b) and 0.16 (c).

to, or larger than γ nr
1 . A brief analytical discussion of this

well-known [25–27] single-mode physics is given in the next
section.

The much richer phenomenology that occurs in the two-
mode case is illustrated in Fig. 2. Interesting features manifest
clearly when both j = 1,2 resonator modes are close to
criticality, γ nr

j ≈ �rad
jj . In Fig. 2(a), we show a case where

both modes are slightly undercoupled �rad
jj � γ nr

j and the
off-diagonal reactive coupling vanishes, �12 = 0. Each mode
then manifests as a transmission dip in the spectrum centered
at a frequency ωj = ωo

j + �jj that includes the diagonal shift
�jj . Note that the the first RMF is much narrower than the
other since γ nr

1 � γ nr
2 . Comparing the different rows of the

figure, we notice that scanning the relative detuning of the two
modes δ = ω2 − ω1 results in a simple, interference-free
superposition of the two dips. Even in this simplest case, a
correct inclusion of �rad

12 is, however, essential to avoid the
appearance of nonphysical features in the calculations, such
as T (ω) > 1.

Figure 2(b) shows the case of slightly overcoupled modes
�rad

jj � γ nr
j , still with �12 = 0. Now, marked interference

features start to appear due to the off-diagonal dissipative
coupling �rad

12 , and the doublets of peaks acquire a complicated
structure. In particular, the narrow dip, normally visible at ω1

(first and seventh rows), is replaced by a complex Fano-like
line shape [2,16,33] (third and fifth) for moderate detunings,
and even reverses its sign into a transmitting EIT feature in the
resonant δ = 0 case (fourth row). Experimental observations
of this physics were recently reported in [18–20].

Finally, the dramatic effect of the off-diagonal reactive
coupling �12 > 0 is shown in Fig. 2(c). As the most visible
general feature, the spectrum is no longer symmetric under a
change in the sign of δ, and the spectral feature due to the
narrow mode is more clearly visible than one would expect
given its deep undercoupling condition. With respect to the
�12 = 0 case shown in Fig. 2(b), the narrow Fano feature
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has a reversed sign for moderate detunings (third and fifth
rows). Furthermore, it is suppressed in a finite detuning range
(sixth row). An analytical explanation of this unexpected effect
will be given in the next section in terms of the destructive
interference of the direct excitation of mode 1 from the
waveguide and its two-step excitation via mode 2 by the
off-diagonal terms of � and �. The two paths almost cancel

out around δ � �12

√
�rad

22 /�rad
11 .

C. Analytical study of the Fano line shapes

Starting from the analytical expression (3) for the transmit-
tivity, in this section we will propose an analytical explanation
for the unexpected features found in the previous section
for the transmission spectra of two-mode cavities. As a first
step, it is useful to isolate in the motion equation (1) the
contribution �rad

j l of the single propagating mode of the
waveguide to the reactive matrix �jl , �jl = �rad

j l + �other
j l .

Introducing (real) relative weights η1,2 with η2
1 + η2

2 = 1 for
the coupling amplitude of the two resonator modes to the single
propagating waveguide mode, one can then write

�rad
j l = ηjηl�̄

rad, (4)

�rad
j l = ηjηl�̄

rad (5)

in terms of an overall radiative dissipation rate �̄rad and an
overall frequency shift �̄rad. Based on experimental input, we
assume that all other waveguide modes do not contribute to the
off-diagonal coupling �other

12 = 0 and we reabsorb the diagonal
terms into ωb

1,2 = ωo
1,2 + �other

11,22.
In this notation, we then have(

ᾱ1

ᾱ2

)
= M−1

(
η1

η2

)
Einc (6)

with

M =
(

δ1 a

a δ2

)
(7)

and

δ1 = ωinc − ωb
1 + i

2

(
γ nr

1 + η2
1�̄

rad
) − η2

1�̄
rad, (8)

δ2 = ωinc − ωb
2 + i

2

(
γ nr

2 + η2
2�̄

rad
) − η2

2�̄
rad, (9)

a = iη1η2

(
�̄rad

2
+ i�̄rad

)
. (10)

Inserting this form into the expression for the transmission
amplitude

t(ωinc) = 1 − i�̄rad(η1ᾱ1 + η2ᾱ2), (11)

and performing a bit of algebraic manipulation, one obtains a
compact expression

t(ωinc) = 1 − i
�̄rad η2

2

δ2
− i

�̄rad η2
1

δ1 − a2/δ2

(
1 − a

δ2

η2

η1

)2

(12)

for the transmission amplitude.

In the limiting case where a single mode is coupled to the
waveguide, e.g., the second one, we can set η1 = 0 and η2

and the last formula reduces to the usual form [27] of the
transmission amplitude for a single-mode ring resonator,

t(ωinc) = 1 − i
�̄rad

ωinc − (
ωb

2 + �̄rad
) + i

2

(
γ nr

2 + �̄rad
) , (13)

on resonance with the (shifted) mode frequency ωinc = ωb
2 +

�̄rad, one in particular has

tres = γ nr
2 − �̄rad

γ nr
2 + �̄rad

. (14)

For �̄rad < γ nr
2 (�̄rad > γ nr

2 ) one has the under- (over-) coupling
regime and the transmission dip is partial, while it is complete
for critical coupling �̄rad = γ nr

2 .
We now go back to the general expression for the transmit-

tivity Eq. (12): the second term proportional to 1/δ2 describes
the broad transmission dip due to the broader mode 2 and the
third term involving δ1 describes the narrow feature due to
mode 1. Here, while the frequency shift of the feature given
by the a2/δ2 term in the denominator does not appear to play a
qualitatively important role, the overall strength of the feature
is dramatically modified by the square of the (slowly varying)
factor

F1 = 1 − a

δ2

η2

η1

= ωinc − ωb
2 + i

2γ nr
2

ωinc − (
ωb

2 + η2
2�̄rad

) + i
2

(
γ nr

2 + η2
2�̄rad

) . (15)

Following the experiments, we focus our attention on the case
where mode 1 is intrinsically narrower than mode 2, γ nr

1 �
γ nr

2 . For a very large off-diagonal coupling �̄rad � γ nr
2 ,�̄rad, in

an extended neighborhood of the resonance with mode 2 (that
is, for ωinc ≈ ωb

2 + η2
2�̄rad), this factor can be much larger than

1 in modulus,

F1 ≈ η2
2�̄rad + i

2γ nr
2

i
2

(
γ nr

2 + η2
2�̄rad

) � �̄rad

i�̄rad
, (16)

which explains why mode 1 is clearly visible in the spectra
even in the deep undercoupling regime.

On the other hand, in the vicinity of the bare mode 2
frequency ωinc � ωb

2, this same factor becomes very small,

F1 ≈ γ nr
2

γ nr
2 + η2

2�̄rad + 2iη2
2�̄rad

� γ nr
2

2i�̄rad
. (17)

This simple fact explains the remarkable suppression of the
Fano feature observed in both the theory and the experiments
for some specific values of the detuning between the two
modes.

The frequency region where the suppression is strongest
coincides with the (typically unobserved) bare frequency ωb

2
of mode 2. However, the corresponding δ0 = ωb

2 − ω2 � �rad
22

can be related to the (can be fitted on the spectra) coupling
term �rad

12 using the fact that the �rad
j l and the �rad

j l have the
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same dependence on the ηj ’s. In particular,

�rad
22

�rad
12

= �rad
22

�rad
12

=
√

�rad
22

�rad
11

, (18)

where we have made use of �rad
12 =

√
�rad

11 �rad
22 to write the

quantity �rad
12 in terms of quantities like �rad

11 and �rad
22 that can

be directly extracted from the spectra when the two radial
family modes are well separated in frequency.

The factor (15) controlling the suppression effect has a sim-
ple physical interpretation in terms of destructive interference
of the different processes leading to the excitation of mode 1,
namely, its direct excitation from the waveguide (with relative
amplitude η1) and its excitation mediated by mode 2 [with
relative amplitude (�rad

12 − i�rad
12 /2) δ−1

2 η2]: when the two
amplitudes compensate to (almost) zero, the mode 1 remains
always empty and is no longer visible in the transmission
spectra. When F1 is significant, its modulus determines the
strength of the mode 1 feature and its phase determines the
asymmetrical shape of the Fano interference profile [2].

IV. NUMERICAL SIMULATIONS

Further support for the predictions of the analytical model
presented in the previous section is provided by ab initio
finite-element numerical simulations. The detailed geometri-
cal shape and material composition of the resonator-waveguide
system are taken into account in the simulations. However, in
order to keep the amount of high-bandwidth memory needed
for such a 3D model under reasonable limits, we restricted the
simulation domain to the portion of the resonator-waveguide
system where the electromagnetic field is really significant.
In particular, the inner part of the microdisk has been
neglected without a significant loss in calculation accuracy.
The extinction coefficient of the material and the boundary
limits have been chosen to reproduce the experimentally
observed decay rates of the different radial family modes.
We have also numerically ensured that a negligible intensity
of backscattered light is produced by the numerical mesh.

In contrast to the resonator eigenmodes studied in Sec. II,
here we have concentrated on the system transmittivity: First,
we solved for the field profiles and the propagation constants
at the input and output ports of the waveguide. Then the
electric field of the whole geometry was obtained by means
of a stationary-state solver in the frequency domain. Finally
the transmittance was obtained by evaluating the scattering
matrix relating the fields at the input and output ports of
the waveguide. The slightly different free spectral range of
the different RMFs allowed us to scan the relative detuning
of the interfering modes by looking at pairs of quasiresonant
modes with different azimuthal quantum numbers.

Examples of spectra for different detunings are shown in
the panels of Fig. 3(a). The qualitative agreement with the
predictions of Eq. (2) in the �12 > 0 regime is remarkable:
the Fano-like feature is clearly visible with the correct sign
for generic detunings (first to fourth rows) and disappears
completely in a well-defined range of δ’s (lowest row). The
three (A,B,C) panels in Fig. 3(b) show horizontal cuts of the
field intensities in the resonator and in the waveguide at three
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FIG. 3. (Color online) (a) Numerically calculated spectra for
different detunings between the two radial family modes. The
azimuthal mode order of the two resonances is reported in each graph.
(b) Planar cuts of the intensity profile inside the resonator and inside
the waveguide at the frequencies indicated as A, B, and C in (a).
(c) The polygonal shape of the spatially oscillating mode profile is
explained via an interference between the fields E1 = E0

1 cos(θM1)
and E2 = E0

2 cos(θM2) of two modes with different azimuthal mode
numbers M1 and M2. (d) This interference pattern is illustrated as
a function of the azimuthal angle θ and the number M2 of the
second-order radial mode for a fixed M1 = 125 of the first-order radial
mode: as expected, the number of polygon vertices is determined by
the difference |M2 − M1|.

different incident frequencies across the Fano-like feature as
indicated in the second panel of Fig. 3(a). While the excitation
at the A (C) point is concentrated in the second (first) mode,
interference between the two modes is responsible for the
snaky shape of the intracavity intensity distribution at the
intermediate point B. As expected [see Figs. 3(c) and 3(d)], the
number of spatial oscillations is determined by the difference
in azimuthal quantum numbers of the two resonator modes.
We note that a similar picture is observed for the other spectra
shown in different panels of Fig. 3(a).

V. EXPERIMENTS

In the previous sections we predicted and discussed
interesting Fano features in the transmission spectra of a
vertically coupled resonator-waveguide device: the analytical

053811-5



MHER GHULINYAN et al. PHYSICAL REVIEW A 90, 053811 (2014)

FIG. 4. (Color online) (Left) An optical photograph of the fabricated 40-μm-diameter microresonator and (a) the measured transmission
spectrum as a function of the absolute incident frequency. The azimuthal mode numbers M1 and M2 are indicated next to the different first-
and second-order radial modes. The two modal families have slightly different free spectral ranges of FSR1 ≈ 1.236 THz and FSR2 ≈ 1.256
THz. (b)–(g) Blow-ups of the regions marked in gray in (a). In each panel, the relative frequency is measured from the broader second family
resonance. Red lines show fits to the spectra using the analytical model.

predictions of Sec. III were validated by ab initio numerical
simulations in Sec. IV. We now proceed with the presentation
of our experiments and the comparison of their results with
the theoretical prediction.

A. Sample preparation and optical characterization

The samples studied in this work were realized using
standard silicon microfabrication tools, as detailed in our
previous works [28,29]. The process starts with growing a
3-μm-thick thermal silicon dioxide cladding on top of a silicon
wafer and is followed by plasma-enhanced chemical vapor
deposition (PECVD) growth of a 300 nm silicon oxynitride
(SiON) layer. The waveguide structures are lithographically
patterned and transferred to the SiON layer using a reactive-ion
etching step. Next, a borophosphosilicate glass is deposited
and flowed again at 1050 ◦C to form a planar top cladding
over the waveguides. Silicon nitride (SiNx) resonators were
realized in a 400-nm-thick layer deposited using PECVD and
defined through a combination of lithographic and dry etching
steps.

The transmittivity was measured in a standard waveguide
transmission setup using a near-infrared tunable laser butt cou-
pled through the waveguide facet using lensed optical fibers. In
order to ensure accurate and stable alignment conditions, the
positions of the lensed fibers were controlled using closed-loop
three-axis piezoelectric stages. The signal polarization was
controlled at the waveguide input and analyzed at its output.
The transmitted signal intensity was recorded with an InGaAs
photodiode.

B. Results and discussion

In the experiments, we looked at pairs of quasiresonant
modes originating from different radial families in microdisk
resonators coupled vertically to dielectric waveguides. The
spatial position of the waveguide with respect to the resonator
edge is indicated by open dots in Figs. 1(c) and 1(d). The
experimental transmission spectrum through the waveguide

for a microdisk of radius R = 40 μm is shown in Fig. 4(a).
It consists of a sequence of doublets originating from the
first (narrow features) and second (broader features) RMFs,
which have slightly different free spectral ranges [31]. This
last permits one RMF to be swept across the other as the
azimuthal order of the underlying modes is increased, and
the doublets’ structure is correspondingly changed. In the
bottom panels Figs. 4(b)–4(g), zoomed views of the different
doublets are shown: to facilitate comparison, in each of these
panels the central frequency is located at the broader second
family resonance (i.e., at ω2 = ωo

2 + �22 in the analytical
model). These spectra are in excellent qualitative agreement
with the predictions of the numerical simulations shown in
Fig. 3: the Fano-like feature has the correct sign and is
visible for generic detunings except for a small range of
values where it completely disappears [Fig. 4(g)]. Moreover,
the experimental data are successfully fitted by the analytical
model [red curves in Figs. 4(b)–(g)]. To further appreciate the
agreement with theory, a pair of color-map plots, summarizing
the experimental findings of Fig. 4 compared to the analytical
prediction, are shown in Fig. 5.
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FIG. 5. (Color online) (a) Color-map plot merging six exper-
imental transmission spectra of the 40 μm resonator, shown in
Figs. 4(b)–4(g). (b) Color-map plot of the analytical prediction (3)
for the transmittivity of a two-mode cavity using globally optimized
parameters.
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FIG. 6. (Color online) (a) Color map merging 21 experimental transmission spectra (indicated as S1–S21) for a 50 μm resonator. On each
row, the relative frequency is measured from the narrow mode frequency. (b) Analytic prediction for T (ω) using a three-mode extension of the
model with optimized global parameters. (c) Selected examples of spectra. (d), (e) System parameters obtained by independently fitting each
experimental spectrum with the analytical model.

The generality of our observations has been confirmed by
repeating the experiment on a larger R = 50 μm resonator
in which the Fano interference takes place between the first
and the third RMFs. The measured transmission spectra are
shown in Figs. 6(a) and 6(c) for different values of the
relative detuning of the quasiresonant pairs of modes. The
crossing of the two families again leads to Fano interference
profiles, and the narrow feature disappears in a specific range
of detunings (spectrum S9). Furthermore, the experimental
results successfully compare to the prediction of the analytical
model, generalized to three modes [Fig. 6(b)].

Finally, Figs. 6(d) and 6(e) summarize the fit parameters
for both 40 μm and 50 μm resonators. Despite the total
independence of the fitting procedures performed on each
spectrum, a smooth dependence of all fit parameters on the
azimuthal mode number is observed. As expected, the scan
of the azimuthal quantum number varies the mode detuning
without affecting the other system parameters. From the top
graph we notice that in both cases the first family modes are
undercoupled to the waveguide, while the second and third
family modes are very close to critical coupling. As stated in
the theoretical section, this combination of couplings is crucial
for a neat observation of the Fano feature. Finally, Fig. 6(e)
shows that the fitted value of the off-diagonal reactive coupling
�12 is always around 15 GHz.

VI. SUMMARY AND CONCLUSIONS

To summarize, in this work we have reported a joint
theoretical and experimental study of a microdisk resonator
vertically coupled to a single-mode waveguide. The impor-
tance of the intermode dissipative and reactive couplings due
to the neighboring waveguide is revealed and characterized
from the peculiar Fano line shapes manifesting in transmission
spectra. From the point of view of pure photonics, our
study provides insight into a phenomenon that may have

application to designing resonators with interesting nonlinear
and quantum functionalities. From a broader perspective, it
provides a simple model in which to study a fundamental
feature of the theory of open systems, namely, the possibility of
environment-mediated couplings—the off-diagonal photonic
Lamb shift—between different modes of a system.
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APPENDIX: THE EIGENFREQUENCIES OF THE
RESONATOR

As we mentioned in Sec. II, the frequency shift of the modes
and their radiative decay rate as a function of the waveguide
position below the disk resonator shown in Fig. 1 were obtained
by solving an eigenvalue problem with suitable absorbing
boundary conditions. In particular, to isolate the frequency
shift and the decay rate of each mode taken independently of
the others, in these first simulations we restricted our attention
to a frequency region where the two radial family modes are
well detuned from each other.

An example of the distortions that one could otherwise
find is illustrated in Fig. 7. In terms of the analytical model of
Sec. III, the complex eigenfrequencies obtained from the FEM
calculation correspond to the eigenvalues of the full linear
problem in (1). While in the general case these eigenfrequen-
cies are strongly affected by the intermode coupling terms that
are the main subject of this work, they recover the independent
mode frequencies ωo

j + �jj + i�rad
jj /2 when the modes are

well separated in frequency.
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FIG. 7. (Color online) Ratio of the decay rates and frequency shift of the resonator modes as obtained from finite-element simulations.
In the left (a), (b) panels [the same plots as in Fig. 1(a)], the different radial family modes are well detuned from each other and effectively
independent. In the right (c),(d) panels, the considered modes are mixed by the off-diagonal reactive and dissipative coupling terms.
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