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Abstract: We numerically investigate nonlinear self-polarization flipping
in a silicon waveguide. We identify specific silicon waveguide geometries
that enhance this effect to facilitate its fabrication and experimental
demonstration by varying various parameters such as fabrication distortion,
waveguide loss, dispersion and laser noise to design the silicon waveguide.
In optimized waveguides, we show that nonlinear self-polarization flipping
can be observed with few tens of watts peak power pulses with widths as
short as 60 ps and laser noise level as large as 7%.
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1. Introduction

Waveguides with high index contrast or sub-wavelength features have recently attracted signif-
icant interest due to their extreme nonlinearity and possible applications for photonic devices
for optical data processing. Examples of these waveguides are used in three research fields:
silicon photonics [1–5], chalcogenide photonics [6–8], and soft glass microstructured photonic
devices [9–13]. These waveguides operate in the strong guidance regime and hence theoretical
models based on weakly guiding approximations, which consider purely transverse propagat-
ing modes (referred to as scalar models in this paper), cannot accurately describe the nonlinear
processes in these waveguides.

Recently, a full-vectorial theory of nonlinear interactions in high index and sub-wavelength
waveguides has been developed [14]. This new theory has been used to develop models for Kerr
nonlinearity [14], Raman effects [15], and nonlinear interaction of two polarizations [19] in the
strong guidance regime. The model for Kerr nonlinearity predicted a significantly higher effec-
tive nonlinear coefficient γ than the one predicted by scalar models. This has been confirmed
experimentally [20].

Through developing a full vectorial model for nonlinear interactions of the two polarizations
in high index contrast or subwavelength waveguides, we have shown that there are new unsta-
ble solutions of the coupled nonlinear Schrödinger equations, which lead to self-polarization
flipping [19,21]. The cause of this nonlinear self-polarization flipping (NSPF) is the anisotropy
of the nonlinear coefficients of the two polarizations that originates from the asymmetry of
the waveguide structure (see [19] for a full discussion). It has recently been predicted that the
required power for NSPF can be reduced to watt levels in waveguides with only one 2-fold
symmetry axis or no symmetry (in this paper, referred to as reduced symmetry), such as rib
waveguides, where the birefringence of the two polarizations can be engineered through the
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waveguide structure to be close to zero at certain wavelengths, i.e., at zero birefringence wave-
length [16]. These predictions were based on an ideal waveguide, where waveguide loss and
dispersion were ignored and only continous wave (CW) and noiseless fields were considered.

Here, we investigate NSPF in silicon waveguides with realistic parameters so that it can
be tested experimentally, which account for loss, noise and dispersion. We investigate the in-
fluences of waveguide structural variations on the flipping behavior, extending our previous
formulation to include the loss in the waveguide and investigate its effects, study numerically
NSPF behavior for pulsed lasers, where dispersion becomes important, and also examine the
effects of fluctuations in the laser power and polarization states on NSPF. We show that silicon
rib waveguides with realistic fabricated parameters can lead to polarization switching using few
tens of watts peak power pulses with widths as short as 60 ps and laser noise level of order of
7%.

2. Zero birefringence wavelength

The nonlinear interaction of the two polarizations can be described by the following coupled
nonlinear Schrödinger equations, which have been generalized to include the loss effects (see
the lossless version Eq. (10) in [19]):

∂A1

∂ z
+

∞

∑
n=1

in−1

n!
β (n)

1
∂ nA1

∂ tn =−α1

2
A1 + i(γ1 |A1|2 + γc |A2|2)A1 + iγ

′
cA

∗
1A2

2 exp(−2izΔβ ),

∂A2

∂ z
+

∞

∑
n=1

in−1

n!
β (n)

2
∂ nA2

∂ tn =−α2

2
A2 + i(γ2 |A2|2 + γc |A1|2)A2 + iγ

′
cA

∗
2A2

1 exp(2izΔβ ),
(1)

where α j and β (n)
j , j = 1,2 are the absorption and n−th order dispersion coefficients of the

two polarization modes, Aj(z, t) are the amplitudes of the two polarization fields, Δβ = β2 −β1

is the birefringence, and γ1,2, γc and γ ′
c are the effective nonlinear coefficients corresponding

to self-phase modulation, cross phase modulation, and coherent phase mixing, respectively
(see [19] for derivations and the equations for different γ’s). In previous work, Equations (1)
for continuous laser fields and lossless waveguides lead to the following coupled dimensionless
equations:

v̇ =
dv
dτ

= v(1− v)sinθ ,

θ̇ =
dθ
dτ

=−a+2bv+(1−2v)cosθ .
(2)

Here v = P1/P0, θ = 2zΔβ +2φ1 −2φ2, τ = 2P0γ ′
cz and the parameters a,b are given by:

a =− Δβ
P0γ ′c

− γc − γ2

γ ′c
, b =

γ1 + γ2 −2γc

2γ ′c
,

where, Pi(z), and φi(z), i = 1,2, are the powers and phases of each polarization, respectively,
P0 = P1 + P2 is the total power, which is constant in τ . The parameter b depends only on
waveguide properties, but a depends on the linear birefringence and total power. Previously
we showed that Eqs. (2) have unstable and periodic solutions for v(τ) and cos(θ/2), when
1 < a < 2b−1, which result in the nonlinear polarization switching. The required power P0 for
existence of such unstable solutions is restricted by the following inequalities [19]:

γc + γ ′c − γ1 <
Δβ
P0

< γ2 − γc − γ ′c. (3)
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P0 is usually too high for typical waveguides unless Δβ is small. By carefully designing the
waveguide structure, the birefringence can be reduced close to zero and hence the necessary
power level P0 can be reduced. However, in symmetric non-birefringent waveguides such as
circular or square waveguides, the condition Δβ → 0 occurs when Δγ = (γ2 − γ1)→ 0 as well,
for which Eqs. (2) have only stable solutions and do not show any NSPF behavior. For struc-
tures with reduced symmetry, the condition Δβ → 0 can be achieved, while having Δγ �= 0,
at a specific wavelength called zero-birefringence wavelength (ZBW) [17]. At ZBW the two
polarization modes have the same β but different field distributions.
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Fig. 1: (a) An example of a optical waveguide with reduced symmetry as defined in the Sec-
tion 1. (b) Schematics of the experiment setup used throughout this paper. WG: waveguide,
LP1&LP2: linear polarizers with polarization aligned 45◦ to the horizon. (c) Output versus
input power for the waveguide in (a) and the experimental setup schematic in (b).

Here, we consider an example of a silicon waveguide with reduced symmetry as shown in
Fig.1(a). A rectangular silicon waveguide, which exhibits high birefringence, sits on the top
of a silica layer surrounded by air. This kind of asymmetry usually results in a large birefrin-
gence, Δβ of the two polarization modes. However, for certain waveguide widths and heights,
in the case of Fig.1(a): width 413 nm and height 400 nm, the fundamental modes of the waveg-
uide, TE and TM, become non-birefringent, Δβ = 0, at 1550 nm wavelength. At this ZBW, the
vertical and the horizontal polarization modes have different mode field distributions, which
leads to different nonlinear coefficients along the two polarization directions and NSPF behav-
ior. Throughout this paper, we consider the schematic shown in Fig.1(b) for our simulation; a
linearly polarized light is incident on the waveguide. The input state of polarization makes an
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angle of 45◦ with the principal axes of the waveguide. A polarizer aligned with the input po-
larization state is used after the waveguide to examine the polarization state of the output light.
Using Eq. (2) and the procedure explained in detail in [16], figure 1(c) shows the output power
as a function of the input power for a CW laser beam and for the waveguide and configuration
shown in Fig. 1(a) and 1(b). The output power drops to zero at input power higher than 2.2 W
and lower than 3.8 W, indicating that at this input power the state of the polarization has flipped
by 90◦.

Generally, many waveguides with different heights and widths can have zero-birefringence
at one wavelength. Figure 2 shows the two-dimensional contour plot of the difference of the

effective refractive indices of the two polarization modes at 1550 nm, Δneff =
λ
2π

Δβ as a

function of waveguide width and height, in which the black line represents Δneff = 0. A linear
fit of the black line gives the following relation:

W (nm) = 1.002×H (nm)+12.4065(nm). (4)

where W and H are the width and height of the Si rib of the waveguide as shown in Fig.1.
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Fig. 2: Difference in the refractive indices of TE and TM for a range of waveguides at 1550 nm.
Black line: the contour where Δneff = 0.

It is important to know that in practice, due to unavoidable fabrication distortions, one cannot
obtain a waveguide with exactly zero birefringence. However, as long as Δβ is small, the power
required for NSPF can be kept to a reasonable level, e.g., in the examples in this paper, the peak
power of pulses can be as low as 40 W.

Apart from the power required for NSPF, the flipping period and speed are also closely
related to Δneff [16]. Hence, when designing a practical waveguide for testing in experiment, it
is important to know the tolerance of the experiment to fabrication distortion. Due to fabrication
errors, the Δβ of the waveguide is no longer zero at the wavelength that it is originally designed
for. However, zero-birefringence can still be found in the waveguide at a different wavelength.
The zero-birefringence wavelength (λZB) of a waveguide is a function of the waveguide’s height
and width. We define two variables, B and L as shown below, to quantify the change in Δβ and
λZB due to fabrication distortion:

B(W,λ ) =
∂Δβ
∂H

L(W,λ ) =
∂λZB

∂H
.
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For any given waveguide width W and wavelength λ , the variables B and L quantify how much
Δβ and λZB change for every unit change of waveguide height (H), respectively. Here, we study
these two parameters at the specific points λ = 1550 nm and H given by Eq. (4).

We assume an arbitrary maximum acceptable change in Δβ of 1000 m−1 (equivalent to Δneff

≈ 2.5×10−4) and a maximum acceptable change in λZB of 500 nm (i.e., a laser with wavelength
tunability about 500 nm), then the corresponding allowable change in the waveguide height
ΔHmax can be found through the following relations respectively:

ΔHmax,B =
1000
B(λ0)

, (5)

ΔHmax,L =
500

L(λ0)
. (6)

By calculating ΔHmax for a range of waveguides with width from 300 to 2000 nm, see Table 1,
the following trends can be observed: for the same amount of change in Δβ , larger waveguides
have better tolerance to structural distortion. However, on the contrary, for the same amount of
change in λZB, smaller waveguides have better tolerance.

Table 1: Comparison of tolerances for different waveguide widths

WG Width (nm) 300 400 500 600 800 1000 1500 2000
ΔHMax,B (nm) 0.005 0.145 0.342 0.684 2.03 4.74 21.9 67.6
ΔHMax,L (nm) 18.1 6.22 4.26 3.55 3.00 2.78 2.55 2.54

The two trends are inversely related. It indicates that in order to compensate for fabrication
distortion, one of two methods can be used: (1) make small waveguides and search for zero
birefringence through probing the waveguide using lasers at different wavelengths; (2) make
the waveguide large enough such that the fabrication distortion will not lead to significant bire-
fringence. However, by considering other practical issues such as multimodeness, we prefer to
use small waveguides (e.g., W = 413 nm) for this work.

3. Effects of loss

Apart from fabrication distortion, the loss in the waveguide is also an important property that
influences the behavior of NSPF. In the previous study [16], the waveguide loss was ignored and
hence the total propagating power P0 was constant in z, i.e., ∂P0/∂ z= 0. However, the presence
of waveguide losses causes an exponential decay of P0. Here, we investigate, analytically and
numerically, the influence of the propagation loss of the two polarizations on NSPF.

We substitute Aj, j = 1,2 as Aj(z)=
√

Pj(z)exp(−α j

2
z+ iφ j(z)), where P1, P2 are the powers

and α1, α2 are the loss coefficients of the two polarization modes. In Eqs. (1), we ignore the
dispersion terms and rewrite Eqs. (1) as:

∂P1

∂ z
= 2P1P2 exp(−zα2)γ

′
c sinθ ,

∂P2

∂ z
=−2P1P2 exp(−zα1)γ

′
c sinθ ,

∂φ1

∂ z
= exp(−zα1)γ1P1 + exp(−zα2)(γc + γ

′
c cosθ)P2,

∂φ2

∂ z
= exp(−zα2)γ2P2 + exp(−zα1)(γc + γ

′
c cosθ)P1,

(7)
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in which θ = 2zΔβ + 2φ1 − 2φ2. In order to analyze these equations further, we consider the
special case α1 = α2 = α , and define v = P1/P0, we find:

∂v
∂τ

= (1− v)vsinθ ,

∂θ
∂τ

=−a(τ)+2bv+(1−2v)cosθ .
(8)

where the independent variable τ is defined by

τ = 2P0γ
′
c

[
1− exp(−αz)

α

]
, (9)

and

a(τ) =
γ2 − γc

γ ′
c

− 2Δβ
2P0γ ′

c −ατ
, b =

γ1 + γ2 −2γc

2γ ′
c

. (10)

Equations (8) have the same form as the lossless case Eqs. (2), except that τ is redefined as in
Eq. (9) and a is a function of τ and depends on α . There are no analytical solutions to Eqs. (8).
However, we can approximate a(τ) as a step function in τ , i.e., we can consider a split-step
scenario such that within a short propagation length the effect of loss is negligible, in which
case a(τ) is constant over this short length. Hence, the NSPF properties in a lossy environment
can be reduced to the study of these properties in each discrete section with a slightly different
parameter a. Hence, the solutions of lossless waveguides, discussed in [19], can be used to find
and analyze the exact solution within each section to any required accuracy. It is necessary
therefore to maintain the condition 1 < a(τ) < 2b−1 in order to preserve the NSPF property,
which requires that α , as well as the length of each section to be small.

In the previous section, we mentioned the importance of reducing Δβ in order to reduce the
pump power required for observing NSPF. It is clear from Eq. (10), that a becomes independent
of τ and α , in the limit of Δβ → 0. As a result, in this limit, the solutions of Eqs. (8) are the
same as those of Eqs. (2), except that τ is now given by Eq. (9) rather than τ = 2P0γ ′

cz as in Eq.
(2). This leads to a scaling rule for the NSPF; the solutions v(τ) and θ(τ) remain the same for
different values of loss α, if τ in Eq. (9) is kept the same by appropriately scaling up or down the
propagation length z and total power P0. The same property holds if Δβ is not exactly zero but
small, i.e., Δβ << P0γ ′

cz. To demonstrate this, we consider a rib waveguide with Δβ = 1 m−1,
γ1 = 166.5 W−1m−1, γ2 = 173.2 W−1m−1, γc = 79.77 W−1m−1 and γc′= 35.05 W−1m−1 and
use a split-step Fourier method to solve the coupled differential equations, Eqs. (1), for CW
laser fields and including waveguide loss.

We also consider the configuration in Fig. 1(b), where a linearly polarized beam (with angle
45◦ between the two polarizations) is incident on the waveguide. Figures 3(a)–3(d) show the
total output power as a function of total input power for α1 = α2, Fig. 3(a) and 3(c), and
α1 �= α2, Fig. 3(b) and 3(d). All the figures show behavior similar to Fig. 1(c); the output power
drops to zero as the input power increases, which indicates that the state of polarization has
flipped by 90◦. The scalability rule is also apparent; the same output-input behavior is observed
by simultaneously decreasing the waveguide length and increasing the input power by the same
factor that the loss value increases.

4. Effects of noise

The noise existing in the laser beams is another practical parameter that can affect the behavior
of NSPF. The noise exists in both the amplitude and phase of the laser beams, which leads to the
noise in the laser power and state of polarization. To investigate the effects of noise on NSPF
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(a) α1 = α2 = α = 100 dB/m, L = 40 mm, P0 = 0 to
10 W
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(b) α1 = 100 dB/m, α2 = 120 dB/m, L= 40 mm, P0 =
0 to 10 W
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(c) α1 = α2 = α = 1000 dB/m, L = 4 mm, P0 = 0 to
100 W
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(d) α1 = 1000 dB/m, α2 = 1200 dB/m, L = 4 mm,
P0 = 0 to 100 W

Fig. 3: The scalability NSPF in lossy systems. (a), (c): the loss in the two polarizations are set
to be the same. (b), (d): the loss in the two polarizations are slightly different.

behavior, we incorporate the noise into the amplitude and the phase of input fields of the two
polarizations at the beginning of the waveguide as

A
′
1(z = 0, t) = A1(z = 0, t)exp(iφ1)+ ε1(t)exp(iψ1(t)), (11)

A
′
2(z = 0, t) = A2(z = 0, t)exp i(φ2)+ ε2(t)exp(iψ2(t)),

where A1, A2, φ1 and φ2 (φ1 = φ2 for linearly polarized input laser) are the noiseless amplitudes
and phases of the input fields of the two polarizations, respectively, and ε1(t)exp(iψ1(t)) and
ε2(t)exp(iψ2(t)) are the noises in the two polarizations. The power of the noise terms, |ε1(t)|2,
|ε2(t)|2 are randomly distributed within the interval of

[
0,x|Aj(t)|2

)
, j = 1,2, where x is a free

parameter that represents the percentage of the power in each polarization. The two phase noise
terms, ψ1(t) and ψ2(t), are also randomly distributed within [0,2π). We then use a split-step
Fourier method to numerically solve the coupled nonlinear Schrödinger equations, Eqs. (1),
with the initial condition as in Eqs. (11). We ignore the dispersion terms in Eqs. (1), however,
we consider quasi-CW pulses (pulses that are much longer than the length of the waveguide)
in order to compare the results with those of the next section, where we include the dispersion
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effects. We consider super Gaussian and quasi-CW pulses of the form:

A1(z = 0, t) = A2(z = 0, t) =

√
P0

2
exp

[

−1
2

(
t
t0

)2m
]

,

where t0 = 5 ns is the pulse width. We choose the peak power (P0) of the input pulse as P0 = 40
W, since at this power the polarization is switched off for noiseless CW input power as shown
by the red dot point in Fig. 4(a). The noise level x is varied from 0 to 100%. We also consider
the same experimental setup as in Fig. 1(b), however, with realistic length and the loss values
of typical silicon waveguides, i.e., L = 4 mm and α = 10 dB/cm (we picked a number from
the high end, a smaller loss will be even better). We have examined the output pulse as the
noise level x is increased from 0% (noiseless) to 20%. For every x value, the output pulse was
calculated for an input pulse with random amplitudes and phases as a function of time, as in Eqs.
(11). Figures 4 (b)–4(d) show the results. In every figure, blue and green data points correspond
to the input and output pulse at different times, respectively. Since the case in Fig. 4(b) does not
contain noise, its behavior should follow the theoretical prediction exactly. This is confirmed
by comparing the input and output power at the center of the pulse (t = 0) with those of the CW
input power at 40 W, shown by the red dot in Fig. 4(a). As the noise increases, the polarization
fluctuation of the propagating pulse also increases, which is shown in the form of increasing
noise in the output.

(a) Input vs. Output
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Fig. 4: (a) Analytical prediction of the output versus CW input power of the waveguide in Fig.
1 (a) with L = 4 mm, α = 10 dB/cm and a CW laser. The red dot is a case where the same input
power (40 W) are used in (b)-(d). (b)-(d) The input (blue) and output (green) pulse shape with
0%, 7% and 20% of noise.
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Fig. 5: The influence of noise on the behavior of NSPF with 40 W, 5 ns (T0) super-Gaussian
pulses in a 4 mm long waveguide. The red dots represent the ratio at 7% and 20% noise level.

In addition to examining the temporal profiles of the input and output pulses, we have also
calculated the ratio of output to input pulse energy, Rout, as a function of noise level x, as
shown in Fig. 5. Small values of Rout,corresponding to low noise level, indicate that most of
the input energy of the pulse has been blocked by the output polarizer LP2, which is the result
of polarization flipping in the waveguide. As x increases and Rout asymptotically approaches
0.5, almost half of the input pulse energy goes through the polarizer which indicates that the
output pulse is fully depolarized. Figure 5 suggests that the noise level of up to 7% does not
significantly affect NSPF behavior, for the specific waveguide considered in this example. Note
that the typical noise level of commercial laser systems is around 5% to 10%.

5. Effects of dispersion

In our previous model of the nonlinear interaction of two polarizations [19], we ignored the
temporal dependence of the pulses or dispersive effects. However, in practice, pulsed lasers are
required to achieve high peak powers. In such cases, the dispersion of the waveguide becomes
important and must be considered in order to correctly describe NSPF behavior. We start with
Eqs. (1) and transform them into the Fourier domain to obtain:

∂A1(ω)

∂ z
= −α1

2
A1(ω)+ iβ1(ω)A1(ω)+ i

(
γ1 |A1(ω)|2 + γc |A2(ω)|2

)
A1(ω)

+iγ ′
cA

∗
1(ω)A2

2(ω)exp(−2izΔβ ),

∂A2(ω)

∂ z
= −α2

2
A2(ω)+ iβ2(ω)A2(ω)+ i

(
γ2 |A2(ω)|2 + γc |A1(ω)|2

)
A2(ω)

+iγ ′
cA

∗
2(ω)A2

1(ω)exp(2izΔβ ),

(12)

where βn(ω) n = 1,2 are the propagation constants of the fundamental modes of the waveg-
uide at the frequency ω , Δβ = β1(ω0)− β2(ω0) and ω0 is the central frequency of the input
pulse which in this case is ω0 = 2πc/λ0 where c is the speed of light and λ0 = 1550 nm. The
advantage of writing the coupled nonlinear Schrödinger equations in the frequency domain, as
in Eqs. (12), is that β1(ω) and β2(ω) include the full dispersion of the two polarizations rather
than only a few dispersion orders (as in Eq. (1)). We have solved Eqs. (12) numerically, using a
Fourier split step method, for the waveguide shown in Fig. 1. The propagation constants of the
waveguide are calculated by using a finite element package (COMSOL). For this waveguide,
the group velocity dispersion of both polarizations are anomalous at the pump wavelength. To
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confirm the validity of our numerical model, we have first considered the results of the numeri-
cal model for quasi-CW pulses, with a very narrow line width, and confirm that they match the
analytical results of the CW model in [19], see Fig. 4 (a).
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Fig. 6: The influence of dispersion on the behavior of NSPF. (b-d): The intersections of the red
lines define the threshold of pulse width for each case.

The influence of dispersion on NSPF cannot be isolated from that of other parameters such
as the noise. Figures 6(b) and 6(c) show the ratio of the input to output pulse energies, Rout,
as a function of pulsewidth [log10(pulsewidth)] for waveguides with and without laser noise.
In both figures, for longer pulses Rout approaches an asymptotic value. As the pulsewidth de-
creases, Rout increases quickly indicating that the output pulses are depolarized. We define the
intersection between the asymptotic values of Rout and a line representing the fast growing sec-
tion of Rout graph (red lines in Figs. 6(b)–6(d)), as the minimum pulsewidth for which NSPF
behavior is still observed. It is observed that NSPF behavior can be observed for pulsewidths as
low as 16.5 ps for the noiseless case, Fig. 6(b). However, the minimum pulsewidth for which
NSPF behavior can be observed, when a noise level of 7% is considered, is of order 62 ps. This
can be explained by noticing that the noise in our model is broadband and acts as a seed of some
spontaneous nonlinear processes such as four-wave mixing and modulation instability. Figure 6
(d), shows Rout as a function of pulsewidth when the loss of the two polarizations are different,
10 and 12 dB/cm. In this case, the minimum pulsewidth is similar to Fig. 6(c) for which the two
polarizations have the same loss of 10 dB/cm.
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6. Conclusion

We have shown the feasibility of achieving NSPF in fabricable silicon waveguides by investi-
gating the behavior of NSPF in a silicon waveguide with realistic parameters. We have studied
the combined effects of structural variation, waveguide loss, laser noise and waveguide group
velocity dispersion on NSPF. For every parameter, we have determined the range for which
NSPF can be observed. We have shown that NSPF should be observed in a 400 nm silicon
waveguide using tunable pulsed lasers with pulse widths bigger than 62 ps, laser noise level
lower than 7%, loss of 10 dB/cm and peak power of a few tens of watts.

The study here focused on a typical silicon waveguide structure, shown in Fig. 1, and hence
the parameter ranges, for which NSPF can be observed, are specific to the particular waveguide
and setup used in this study. The range of these parameters change for other waveguide struc-
tures. It would be possible to identify the waveguide structure that optimizes one or more of
these parameters.

One important parameter that affects NSPF behavior is the dispersion which is determined by
the waveguide geometry (refractive index distribution n(x,y)). There may be an optimum dis-
persion profile for NSPF behavior. However, to investigate this possibility as well as to discover
other interesting nonlinear effects, further development of the original full vectorial nonlinear
Schrödinger equations is required. Such equations should describe the nonlinear interaction of
the two polarizations, to include temporal effects (dispersion), which by itself is a topic for
future investigation.

The study here shows that typical silicon waveguides with structures shown in Fig. 1 and
with practical parameters can be used for nonlinear polarization switching.
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