QRANGE: Quantum Random Number Generators: cheaper, faster and more secure
The generation of random numbers plays a crucial role in many applications in science and impacting society, in particular for simulation and cryptography. It is of fundamental importance that the generated numbers are truly random, as any deviation may adversely effect modelling or jeopardise security. Notably, recent breaches of cryptographic protocols have exploited weaknesses in the random number generation. In this context, schemes exploiting the inherent randomness of quantum physics have been extensively investigated. Quantum random number generation (QRNG) devices are now commercially available, which arguably represents one of the most successful developments of quantum technologies so far.
QRANGE wants to push the QRNG technology further, allowing for a wide range of commercial applications of QRNG. We will build three different prototypes, which are cheaper, faster and more secure than existing devices: i) A fully integrated low-cost QRNG based on standard CMOS technology with a cost of the order of 1€ for IoT. ii) A high-speed phase-diffusion scheme based on the interference of laser pulses with random phase relationship featuring bit rates of up to 10Gb/s. iii) Inspired by device independent schemes, a self-testing QRNG, which allows for a continuous estimation of the generated entropy, with few assumptions on the devices. Moreover, we will make considerable theoretical effort for modelling the devices, designing efficient randomness extractors and studying new semi device-independent concepts. Last but not least, we will work together with the competent institutions towards a full certification scheme of QRNG devices compliant with the highest security standards. This project addresses many key points in the call and is well-aligned with the vision and objectives of the Quantum Technologies Flagship, especially in terms of taking quantum technologies from the laboratory to industry with concrete prototype applications and marketable products.

BACKUP: Unveiling the relationship between brain connectivity and function by integrated photonics


Objectives BACKUP tackles the challenges of realizing a hybrid neuromorphic intelligent network where photonic circuitry provides both the core computing power as well as the interface to biological neurons and electronic circuitry provides both the required I/O control and the platform where algorithms (i.e., deep learning networks) emulate the biological network. After realizing a massive reservoir-computing photonic network based on a complex topology and a neuron/integrated photonic circuit interface where light controls both the topological connections (synapses) and the activity of the biological neurons, BACKUP will develop:
1. dynamic memories in photonic integrated circuits (PIC) using reservoir-computing network (RCN);
2. time-series forecasting for both noisy and chaotic inputs;
3. an artificial network (software-implemented) which emulates the physical hybrid network;
4. a hybrid network where biologic and artificial networks collaborate to jointly solve computation tasks;
5. artificial memory engrams to understand the cellular base of memory and the neuronal plasticity during learning;
6. hybrid circuits controlling neuronal hyperexcitability and seizure-induced plastic changes.
All these are extremely high-risk activities with extremely groundbreaking objectives. However, strong scientific and societal motivations – the limit of standard computers and the impact of neurological disorders on the population – motivate this research.
Recent progresses in photonics, computer science, deep learning, time series analysis, optogenetics and neurophysiology support my ambitions.

Nonlinear dynamics of optical frequency combs (NEMO) (2017-2019)


Optical frequency combs (OFCs) are light sources with a spectrum containing thousands of equally spaced laser lines. OFCs have revolutionized precise optical frequency measurements by making it possible to directly link any optical frequency to a microwave clock. Nowadays they are the indispensable equipment for many other applications, ranging from synchronization of telecommunication systems to astronomical spectral calibration and biomedical or environmental spectrometry. To date, most of the comb spectroscopies rely on table-top mode-locked femtosecond laser systems. As an alternative, passive comb sources based on Kerr microresonators have shown the technological possibility to reduce the size of a comb source to that of a sensing device. The tight confinement of light within the resonator enhances the intensity-dependent nonlinear interaction, thus enabling efficient frequency conversion of pump photons to signal and idler sidebands. However, the threshold power of Kerr combs remains too high for permitting a chip-scale comb source with an integrated pump laser. In the NEMO project we develop novel breakthrough technologies that will enable chip-based OFC sources. The first technology is that of OFCs based on quadratic nonlinear materials, which permits to reduce the pump power threshold down to the microwatt level, and the simultaneous generation of combs in different spectral regions. The second technology is that of frequency combs directly generated from a quantum cascade semiconductor laser. A key requirement for all applications is that the comb should be stable and exhibit low-phase noise operation. This is challenging because both passive and active OFC sources are nonlinear devices that exhibit a highly complex, and essentially chaotic dynamics. To be able to practically utilize OFCs based on quadratic and Kerr nonlinearities, it is crucial to develop a comprehensive theoretical understanding of the nonlinear dynamics for comb generation processes, and study the existence, behavior and stability of these devices. In this project we seek to alleviate this need by developing a novel theoretical framework able to predict the behavior and stability of both passive and active OFC sources.




A cheap, light, compact source for QKD based on intraparticle entanglement in an integrated photonic circuit (2018-2021)

The aim of this project is to develop the theory, validate the principles, design the optical system and demonstrate a quantum key distribution optical link based on the innovative concept of intra-particle entanglement. An integrated source of a quantum key in a silicon chip will be fabricated and inserted into an optical fiber communications system to demonstrate the feasibility of the concept. The innovation is both on the conceptual aspect of using a single particle for quantum key distribution, on the use of an incoherent light source to generate the entangled state as well as demonstrating quantum key distribution using a single particle based intra-particle entanglement.


Q@TN - Quantum Science and Technology in Trento

IRIS logo


  1. Aligning all Trentino actors in the field of quantum science and technology (QST) and developing a common strategy
  2. Covering most aspects of QST merging the relevant expertise of the Partner Institutions
  3. Singling out Trentino as a reference point at European level in the area of QST

Q@TN operates within the framework of the newly launched Quantum Technologies Flagship. Q@TN coordinates the scientific and technological research and the high education in QST in Trentino, increasing the impact of the activity already carried out by local researchers in strategic areas of quantum science. Q@TN aims to attract further resources from national and international funding organisations.